Edoardo Barba


2024

pdf bib
Beyond Correlation: Interpretable Evaluation of Machine Translation Metrics
Stefano Perrella | Lorenzo Proietti | Pere-Lluís Huguet Cabot | Edoardo Barba | Roberto Navigli
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Machine Translation (MT) evaluation metrics assess translation quality automatically. Recently, researchers have employed MT metrics for various new use cases, such as data filtering and translation re-ranking. However, most MT metrics return assessments as scalar scores that are difficult to interpret, posing a challenge to making informed design choices. Moreover, MT metrics’ capabilities have historically been evaluated using correlation with human judgment, which, despite its efficacy, falls short of providing intuitive insights into metric performance, especially in terms of new metric use cases. To address these issues, we introduce an interpretable evaluation framework for MT metrics. Within this framework, we evaluate metrics in two scenarios that serve as proxies for the data filtering and translation re-ranking use cases. Furthermore, by measuring the performance of MT metrics using Precision, Recall, and F-score, we offer clearer insights into their capabilities than correlation with human judgments. Finally, we raise concerns regarding the reliability of manually curated data following the Direct Assessments+Scalar Quality Metrics (DA+SQM) guidelines, reporting a notably low agreement with Multidimensional Quality Metrics (MQM) annotations.

pdf bib
ReLiK: Retrieve and LinK, Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget
Riccardo Orlando | Pere-Lluís Huguet Cabot | Edoardo Barba | Roberto Navigli
Findings of the Association for Computational Linguistics: ACL 2024

Entity Linking (EL) and Relation Extraction (RE) are fundamental tasks in Natural Language Processing, serving as critical components in a wide range of applications. In this paper, we propose ReLiK, a Retriever-Reader architecture for both EL and RE, where, given an input text, the Retriever module undertakes the identification of candidate entities or relations that could potentially appear within the text. Subsequently, the Reader module is tasked to discern the pertinent retrieved entities or relations and establish their alignment with the corresponding textual spans. Notably, we put forward an innovative input representation that incorporates the candidate entities or relations alongside the text, making it possible to link entities or extract relations in a single forward pass and to fully leverage pre-trained language models contextualization capabilities, in contrast with previous Retriever-Reader-based methods, which require a forward pass for each candidate. Our formulation of EL and RE achieves state-of-the-art performance in both in-domain and out-of-domain benchmarks while using academic budget training and with up to 40x inference speed compared to competitors. Finally, we show how our architecture can be used seamlessly for Information Extraction (cIE), i.e. EL + RE, and setting a new state of the art by employing a shared Reader that simultaneously extracts entities and relations.

pdf bib
Word Sense Linking: Disambiguating Outside the Sandbox
Andrei Bejgu | Edoardo Barba | Luigi Procopio | Alberte Fernández-Castro | Roberto Navigli
Findings of the Association for Computational Linguistics: ACL 2024

Word Sense Disambiguation (WSD) is the task of associating a word in a given context with its most suitable meaning among a set of possible candidates. While the task has recently witnessed renewed interest, with systems achieving performances above the estimated inter-annotator agreement, at the time of writing it still struggles to find downstream applications. We argue that one of the reasons behind this is the difficulty of applying WSD to plain text. Indeed, in the standard formulation, models work under the assumptions that a) all the spans to disambiguate have already been identified, and b) all the possible candidate senses of each span are provided, both of which are requirements that are far from trivial. In this work, we present a new task called Word Sense Linking (WSL) where, given an input text and a reference sense inventory, systems have to both identify which spans to disambiguate and then link them to their most suitable meaning.We put forward a transformer-based architecture for the task and thoroughly evaluate both its performance and those of state-of-the-art WSD systems scaled to WSL, iteratively relaxing the assumptions of WSD. We hope that our work will foster easier integration of lexical semantics into downstream applications.

pdf bib
MOSAICo: a Multilingual Open-text Semantically Annotated Interlinked Corpus
Simone Conia | Edoardo Barba | Abelardo Carlos Martinez Lorenzo | Pere-Lluís Huguet Cabot | Riccardo Orlando | Luigi Procopio | Roberto Navigli
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Several Natural Language Understanding (NLU) tasks focus on linking text to explicit knowledge, including Word Sense Disambiguation, Semantic Role Labeling, Semantic Parsing, and Relation Extraction. In addition to the importance of connecting raw text with explicit knowledge bases, the integration of such carefully curated knowledge into deep learning models has been shown to be beneficial across a diverse range of applications, including Language Modeling and Machine Translation. Nevertheless, the scarcity of semantically-annotated corpora across various tasks and languages limits the potential advantages significantly. To address this issue, we put forward MOSAICo, the first endeavor aimed at equipping the research community with the key ingredients to model explicit semantic knowledge at a large scale, providing hundreds of millions of silver yet high-quality annotations for four NLU tasks across five languages. We describe the creation process of MOSAICo, demonstrate its quality and variety, and analyze the interplay between different types of semantic information. MOSAICo, available at https://github.com/SapienzaNLP/mosaico, aims to drop the requirement of closed, licensed datasets and represents a step towards a level playing field across languages and tasks in NLU.

pdf bib
Maverick: Efficient and Accurate Coreference Resolution Defying Recent Trends
Giuliano Martinelli | Edoardo Barba | Roberto Navigli
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large autoregressive generative models have emerged as the cornerstone for achieving the highest performance across several Natural Language Processing tasks. However, the urge to attain superior results has, at times, led to the premature replacement of carefully designed task-specific approaches without exhaustive experimentation. The Coreference Resolution task is no exception; all recent state-of-the-art solutions adopt large generative autoregressive models that outperform encoder-based discriminative systems. In this work, we challenge this recent trend by introducing Maverick, a carefully designed – yet simple – pipeline, which enables running a state-of-the-art Coreference Resolution system within the constraints of an academic budget, outperforming models with up to 13 billion parameters with as few as 500 million parameters. Maverick achieves state-of-the-art performance on the CoNLL-2012 benchmark, training with up to 0.006x the memory resources and obtaining a 170x faster inference compared to previous state-of-the-art systems. We extensively validate the robustness of the Maverick framework with an array of diverse experiments, reporting improvements over prior systems in data-scarce, long-document, and out-of-domain settings. We release our code and models for research purposes at https://github.com/SapienzaNLP/maverick-coref.

pdf bib
Guardians of the Machine Translation Meta-Evaluation: Sentinel Metrics Fall In!
Stefano Perrella | Lorenzo Proietti | Alessandro Scirè | Edoardo Barba | Roberto Navigli
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Annually, at the Conference of Machine Translation (WMT), the Metrics Shared Task organizers conduct the meta-evaluation of Machine Translation (MT) metrics, ranking them according to their correlation with human judgments. Their results guide researchers toward enhancing the next generation of metrics and MT systems. With the recent introduction of neural metrics, the field has witnessed notable advancements. Nevertheless, the inherent opacity of these metrics has posed substantial challenges to the meta-evaluation process. This work highlights two issues with the meta-evaluation framework currently employed in WMT, and assesses their impact on the metrics rankings. To do this, we introduce the concept of sentinel metrics, which are designed explicitly to scrutinize the meta-evaluation process’s accuracy, robustness, and fairness. By employing sentinel metrics, we aim to validate our findings, and shed light on and monitor the potential biases or inconsistencies in the rankings. We discover that the present meta-evaluation framework favors two categories of metrics: i) those explicitly trained to mimic human quality assessments, and ii) continuous metrics. Finally, we raise concerns regarding the evaluation capabilities of state-of-the-art metrics, emphasizing that they might be basing their assessments on spurious correlations found in their training data.

2023

pdf bib
DMLM: Descriptive Masked Language Modeling
Edoardo Barba | Niccolò Campolungo | Roberto Navigli
Findings of the Association for Computational Linguistics: ACL 2023

Over the last few years, Masked Language Modeling (MLM) pre-training has resulted in remarkable advancements in many Natural Language Understanding (NLU) tasks, which sparked an interest in researching alternatives and extensions to the MLM objective. In this paper, we tackle the absence of explicit semantic grounding in MLM and propose Descriptive Masked Language Modeling (DMLM), a knowledge-enhanced reading comprehension objective, where the model is required to predict the most likely word in a context, being provided with the word’s definition. For instance, given the sentence “I was going to the _”, if we provided as definition “financial institution”, the model would have to predict the word “bank”; if, instead, we provided “sandy seashore”, the model should predict “beach”. Our evaluation highlights the effectiveness of DMLM in comparison with standard MLM, showing improvements on a number of well-established NLU benchmarks, as well as other semantics-focused tasks, e.g., Semantic Role Labeling. Furthermore, we demonstrate how it is possible to take full advantage of DMLM to embed explicit semantics in downstream tasks, explore several properties of DMLM-based contextual representations and suggest a number of future directions to investigate.

pdf bib
Code-Switching with Word Senses for Pretraining in Neural Machine Translation
Vivek Iyer | Edoardo Barba | Alexandra Birch | Jeff Pan | Roberto Navigli
Findings of the Association for Computational Linguistics: EMNLP 2023

Lexical ambiguity is a significant and pervasive challenge in Neural Machine Translation (NMT), with many state-of-the-art (SOTA) NMT systems struggling to handle polysemous words (Campolungo et al., 2022). The same holds for the NMT pretraining paradigm of denoising synthetic “code-switched” text (Pan et al., 2021; Iyer et al., 2023), where word senses are ignored in the noising stage – leading to harmful sense biases in the pretraining data that are subsequently inherited by the resulting models. In this work, we introduce Word Sense Pretraining for Neural Machine Translation (WSP-NMT) - an end-to-end approach for pretraining multilingual NMT models leveraging word sense-specific information from Knowledge Bases. Our experiments show significant improvements in overall translation quality. Then, we show the robustness of our approach to scale to various challenging data and resource-scarce scenarios and, finally, report fine-grained accuracy improvements on the DiBiMT disambiguation benchmark. Our studies yield interesting and novel insights into the merits and challenges of integrating word sense information and structured knowledge in multilingual pretraining for NMT.

pdf bib
Entity Disambiguation with Entity Definitions
Luigi Procopio | Simone Conia | Edoardo Barba | Roberto Navigli
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Local models have recently attained astounding performances in Entity Disambiguation (ED), with generative and extractive formulations being the most promising research directions. However, previous works have so far limited their studies to using, as the textual representation of each candidate, only its Wikipedia title. Although certainly effective, this strategy presents a few critical issues, especially when titles are not sufficiently informative or distinguishable from one another. In this paper, we address this limitation and investigate the extent to which more expressive textual representations can mitigate it. We evaluate our approach thoroughly against standard benchmarks in ED and find extractive formulations to be particularly well-suited to such representations. We report a new state of the art on 2 out of the 6 benchmarks we consider and strongly improve the generalization capability over unseen patterns. We release our code, data and model checkpoints at https://github.com/SapienzaNLP/extend.

pdf bib
LexicoMatic: Automatic Creation of Multilingual Lexical-Semantic Dictionaries
Federico Martelli | Luigi Procopio | Edoardo Barba | Roberto Navigli
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

2022

pdf bib
ExtEnD: Extractive Entity Disambiguation
Edoardo Barba | Luigi Procopio | Roberto Navigli
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Local models for Entity Disambiguation (ED) have today become extremely powerful, in most part thanks to the advent of large pre-trained language models. However, despite their significant performance achievements, most of these approaches frame ED through classification formulations that have intrinsic limitations, both computationally and from a modeling perspective. In contrast with this trend, here we propose ExtEnD, a novel local formulation for ED where we frame this task as a text extraction problem, and present two Transformer-based architectures that implement it. Based on experiments in and out of domain, and training over two different data regimes, we find our approach surpasses all its competitors in terms of both data efficiency and raw performance. ExtEnD outperforms its alternatives by as few as 6 F1 points on the more constrained of the two data regimes and, when moving to the other higher-resourced regime, sets a new state of the art on 4 out of 4 benchmarks under consideration, with average improvements of 0.7 F1 points overall and 1.1 F1 points out of domain. In addition, to gain better insights from our results, we also perform a fine-grained evaluation of our performances on different classes of label frequency, along with an ablation study of our architectural choices and an error analysis. We release our code and models for research purposes at https://github.com/SapienzaNLP/extend.

pdf bib
Semantic Role Labeling Meets Definition Modeling: Using Natural Language to Describe Predicate-Argument Structures
Simone Conia | Edoardo Barba | Alessandro Scirè | Roberto Navigli
Findings of the Association for Computational Linguistics: EMNLP 2022

One of the common traits of past and present approaches for Semantic Role Labeling (SRL) is that they rely upon discrete labels drawn from a predefined linguistic inventory to classify predicate senses and their arguments.However, we argue this need not be the case. In this paper, we present an approach that leverages Definition Modeling to introduce a generalized formulation of SRL as the task of describing predicate-argument structures using natural language definitions instead of discrete labels. Our novel formulation takes a first step towards placing interpretability and flexibility foremost, and yet our experiments and analyses on PropBank-style and FrameNet-style, dependency-based and span-based SRL also demonstrate that a flexible model with an interpretable output does not necessarily come at the expense of performance. We release our software for research purposes at https://github.com/SapienzaNLP/dsrl.

pdf bib
A Tour of Explicit Multilingual Semantics: Word Sense Disambiguation, Semantic Role Labeling and Semantic Parsing
Roberto Navigli | Edoardo Barba | Simone Conia | Rexhina Blloshmi
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: Tutorial Abstracts

The recent advent of modern pretrained language models has sparked a revolution in Natural Language Processing (NLP), especially in multilingual and cross-lingual applications. Today, such language models have become the de facto standard for providing rich input representations to neural systems, achieving unprecedented results in an increasing range of benchmarks. However, questions that often arise are: firstly, whether current language models are, indeed, able to capture explicit, symbolic meaning; secondly, if they are, to what extent; thirdly, and perhaps more importantly, whether current approaches are capable of scaling across languages. In this cutting-edge tutorial, we will review recent efforts that have aimed at shedding light on meaning in NLP, with a focus on three key open problems in lexical and sentence-level semantics: Word Sense Disambiguation, Semantic Role Labeling, and Semantic Parsing. After a brief introduction, we will spotlight how state-of-the-art models tackle these tasks in multiple languages, showing where they excel and where they fail. We hope that this tutorial will broaden the audience interested in multilingual semantics and inspire researchers to further advance the field.

2021

pdf bib
ESC: Redesigning WSD with Extractive Sense Comprehension
Edoardo Barba | Tommaso Pasini | Roberto Navigli
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Word Sense Disambiguation (WSD) is a historical NLP task aimed at linking words in contexts to discrete sense inventories and it is usually cast as a multi-label classification task. Recently, several neural approaches have employed sense definitions to better represent word meanings. Yet, these approaches do not observe the input sentence and the sense definition candidates all at once, thus potentially reducing the model performance and generalization power. We cope with this issue by reframing WSD as a span extraction problem — which we called Extractive Sense Comprehension (ESC) — and propose ESCHER, a transformer-based neural architecture for this new formulation. By means of an extensive array of experiments, we show that ESC unleashes the full potential of our model, leading it to outdo all of its competitors and to set a new state of the art on the English WSD task. In the few-shot scenario, ESCHER proves to exploit training data efficiently, attaining the same performance as its closest competitor while relying on almost three times fewer annotations. Furthermore, ESCHER can nimbly combine data annotated with senses from different lexical resources, achieving performances that were previously out of everyone’s reach. The model along with data is available at https://github.com/SapienzaNLP/esc.

pdf bib
ConSeC: Word Sense Disambiguation as Continuous Sense Comprehension
Edoardo Barba | Luigi Procopio | Roberto Navigli
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Supervised systems have nowadays become the standard recipe for Word Sense Disambiguation (WSD), with Transformer-based language models as their primary ingredient. However, while these systems have certainly attained unprecedented performances, virtually all of them operate under the constraining assumption that, given a context, each word can be disambiguated individually with no account of the other sense choices. To address this limitation and drop this assumption, we propose CONtinuous SEnse Comprehension (ConSeC), a novel approach to WSD: leveraging a recent re-framing of this task as a text extraction problem, we adapt it to our formulation and introduce a feedback loop strategy that allows the disambiguation of a target word to be conditioned not only on its context but also on the explicit senses assigned to nearby words. We evaluate ConSeC and examine how its components lead it to surpass all its competitors and set a new state of the art on English WSD. We also explore how ConSeC fares in the cross-lingual setting, focusing on 8 languages with various degrees of resource availability, and report significant improvements over prior systems. We release our code at https://github.com/SapienzaNLP/consec.