We study in this paper the problem of clustering comparable corpora, building upon the observation that different types of clusters can be present in such corpora: monolingual clusters comprising documents in a single language, and bilingual or multilingual clusters comprising documents written in different languages. Based on a state-of-the-art deep variant of Kmeans, we propose new clustering models fully adapted to comparable corpora and illustrate their behavior on several bilingual collections (in English, French, German and Russian) created from Wikipedia.
Recent studies have demonstrated that the ability of dense retrieval models to generalize to target domains with different distributions is limited, which contrasts with the results obtained with interaction-based models. Prior attempts to mitigate this challenge involved leveraging adversarial learning and query generation approaches, but both approaches nevertheless resulted in limited improvements. In this paper, we propose to combine the query-generation approach with a self-supervision approach in which pseudo-relevance labels are automatically generated on the target domain. To accomplish this, a T5-3B model is utilized for pseudo-positive labeling, and meticulous hard negatives are chosen. We also apply this strategy on conversational dense retrieval model for conversational search. A similar pseudo-labeling approach is used, but with the addition of a query-rewriting module to rewrite conversational queries for subsequent labeling. This proposed approach enables a model’s domain adaptation with real queries and documents from the target dataset. Experiments on standard dense retrieval and conversational dense retrieval models both demonstrate improvements on baseline models when they are fine-tuned on the pseudo-relevance labeled data.
Bien que la recherche d’information neuronale ait connu des améliorations, les modèles de recherche dense ont une capacité de généralisation à de nouveaux domaines limitée, contrairement aux modèles basés sur l’interaction. Les approches d’apprentissage adversarial et de génération de requêtes n’ont pas résolu ce problème. Cet article propose une approche d’auto-supervision utilisant des étiquettes de pseudo-pertinence automatiquement générées pour le domaine cible. Le modèle T53B est utilisé pour réordonner une liste de documents fournie par BM25 afin d’obtenir une annotation des exemples positifs. L’extraction des exemples négatifs est effectuée en explorant différentes stratégies. Les expériences montrent que cette approche aide le modèle dense sur le domaine cible et améliore l’approche de génération de requêtes GPL.
Les réseaux neuronaux profonds et les modèles fondés sur les transformeurs comme BERT ont envahi le domaine de la recherche d’informations (RI) ces dernières années. Leur succès est lié au mécanisme d’auto-attention qui permet de capturer les dépendances entre les mots indépendamment de leur distance. Cependant, en raison de sa complexité quadratique dans le nombre de mots, ce mécanisme ne peut être directement utilisé sur de longues séquences, ce qui ne permet pas de déployer entièrement les modèles neuronaux sur des documents longs pouvant contenir des milliers de mots. Trois stratégies standard ont été adoptées pour contourner ce problème. La première consiste à tronquer les documents longs, la deuxième à segmenter les documents longs en passages plus courts et la dernière à remplacer le module d’auto-attention par des modules d’attention parcimonieux. Dans le premier cas, des informations importantes peuvent être perdues et le jugement de pertinence n’est fondé que sur une partie de l’information contenue dans le document. Dans le deuxième cas, une architecture hiérarchique peut être adoptée pour construire une représentation du document sur la base des représentations de chaque passage. Cela dit, malgré ses résultats prometteurs, cette stratégie reste coûteuse en temps, en mémoire et en énergie. Dans le troisième cas, les contraintes de parcimonie peuvent conduire à manquer des dépendances importantes et, in fine, à des résultats sous-optimaux. L’approche que nous proposons est légèrement différente de ces stratégies et vise à capturer, dans les documents longs, les blocs les plus importants permettant de décider du statut, pertinent ou non, de l’ensemble du document. Elle repose sur trois étapes principales : (a) la sélection de blocs clés (c’est-à-dire susceptibles d’être pertinents) avec un pré-classement local en utilisant soit des modèles de RI classiques, soit un module d’apprentissage, (b) l’apprentissage d’une représentation conjointe des requêtes et des blocs clés à l’aide d’un modèle BERT standard, et (c) le calcul d’un score de pertinence final qui peut être considéré comme une agrégation d’informations de pertinence locale. Dans cet article, nous menons tout d’abord une analyse qui révèle que les signaux de pertinence peuvent apparaître à différents endroits dans les documents et que de tels signaux sont mieux capturés par des relations sémantiques que par des correspondances exactes. Nous examinons ensuite plusieurs méthodes pour sélectionner les blocs pertinents et montrons comment intégrer ces méthodes dans les modèles récents de RI.
Fine-tuning a large language model on downstream tasks has become a commonly adopted process in the Natural Language Processing (NLP) (CITATION). However, such a process, when associated with the current transformer-based (CITATION) architectures, shows several limitations when the target task requires to reason with long documents. In this work, we introduce a novel hierarchical propagation layer that spreads information between multiple transformer windows. We adopt a hierarchical approach where the input is divided in multiple blocks independently processed by the scaled dot-attentions and combined between the successive layers. We validate the effectiveness of our approach on three extractive summarization corpora of long scientific papers and news articles. We compare our approach to standard and pre-trained language-model-based summarizers and report state-of-the-art results for long document summarization and comparable results for smaller document summarization.
Les modèles neuronaux de type seq2seq manifestent d’étonnantes capacités de prédiction quand ils sont entraînés sur des données de taille suffisante. Cependant, ils échouent à généraliser de manière satisfaisante quand la tâche implique d’apprendre et de réutiliser des règles systématiques de composition et non d’apprendre simplement par imitation des exemples d’entraînement. Le jeu de données SCAN, constitué d’un ensemble de commandes en langage naturel associées à des séquences d’action, a été spécifiquement conçu pour évaluer les capacités des réseaux de neurones à apprendre ce type de généralisation compositionnelle. Dans cet article, nous nous proposons d’étudier la contribution d’informations syntaxiques sur les capacités de généralisation compositionnelle des réseaux de neurones seq2seq convolutifs.
This article establishes that, unlike the legacy tf*idf representation, recent natural language representations (word embedding vectors) tend to exhibit a so-called concentration of measure phenomenon, in the sense that, as the representation size p and database size n are both large, their behavior is similar to that of large dimensional Gaussian random vectors. This phenomenon may have important consequences as machine learning algorithms for natural language data could be amenable to improvement, thereby providing new theoretical insights into the field of natural language processing.
We propose in this paper a new, hybrid document embedding approach in order to address the problem of document similarities with respect to the technical content. To do so, we employ a state-of-the-art graph techniques to first extract the keyphrases (composite keywords) of documents and, then, use them to score the sentences. Using the ranked sentences, we propose two approaches to embed documents and show their performances with respect to two baselines. With domain expert annotations, we illustrate that the proposed methods can find more relevant documents and outperform the baselines up to 27% in terms of NDCG.
This paper describes our submission to the E2E NLG Challenge. Recently, neural seq2seq approaches have become mainstream in NLG, often resorting to pre- (respectively post-) processing delexicalization (relexicalization) steps at the word-level to handle rare words. By contrast, we train a simple character level seq2seq model, which requires no pre/post-processing (delexicalization, tokenization or even lowercasing), with surprisingly good results. For further improvement, we explore two re-ranking approaches for scoring candidates. We also introduce a synthetic dataset creation procedure, which opens up a new way of creating artificial datasets for Natural Language Generation.
This paper presents an LDA-based model that generates topically coherent segments within documents by jointly segmenting documents and assigning topics to their words. The coherence between topics is ensured through a copula, binding the topics associated to the words of a segment. In addition, this model relies on both document and segment specific topic distributions so as to capture fine grained differences in topic assignments. We show that the proposed model naturally encompasses other state-of-the-art LDA-based models designed for similar tasks. Furthermore, our experiments, conducted on six different publicly available datasets, show the effectiveness of our model in terms of perplexity, Normalized Pointwise Mutual Information, which captures the coherence between the generated topics, and the Micro F1 measure for text classification.
Recently Wen et al. (2015) have proposed a Recurrent Neural Network (RNN) approach to the generation of utterances from dialog acts, and shown that although their model requires less effort to develop than a rule-based system, it is able to improve certain aspects of the utterances, in particular their naturalness. However their system employs generation at the word-level, which requires one to pre-process the data by substituting named entities with placeholders. This pre-processing prevents the model from handling some contextual effects and from managing multiple occurrences of the same attribute. Our approach uses a character-level model, which unlike the word-level model makes it possible to learn to “copy” information from the dialog act to the target without having to pre-process the input. In order to avoid generating non-words and inventing information not present in the input, we propose a method for incorporating prior knowledge into the RNN in the form of a weighted finite-state automaton over character sequences. Automatic and human evaluations show improved performance over baselines on several evaluation criteria.
The exchangeability assumption in topic models like Latent Dirichlet Allocation (LDA) often results in inferring inconsistent topics for the words of text spans like noun-phrases, which are usually expected to be topically coherent. We propose copulaLDA, that extends LDA by integrating part of the text structure to the model and relaxes the conditional independence assumption between the word-specific latent topics given the per-document topic distributions. To this end, we assume that the words of text spans like noun-phrases are topically bound and we model this dependence with copulas. We demonstrate empirically the effectiveness of copulaLDA on both intrinsic and extrinsic evaluation tasks on several publicly available corpora.
Nous étudions dans cet article le problème de la comparabilité des documents composant un corpus comparable afin d’améliorer la qualité des lexiques bilingues extraits et les performances des systèmes de recherche d’information interlingue. Nous proposons une nouvelle approche qui permet de garantir un certain degré de comparabilité et d’homogénéité du corpus tout en préservant une grande part du vocabulaire du corpus d’origine. Nos expériences montrent que les lexiques bilingues que nous obtenons sont d’une meilleure qualité que ceux obtenus avec les approches précédentes, et qu’ils peuvent être utilisés pour améliorer significativement les systèmes de recherche d’information interlingue.
Cet article présente une méthode de traduction automatique statistique basée sur des segments non-continus, c’est-à-dire des segments formés de mots qui ne se présentent pas nécéssairement de façon contiguë dans le texte. On propose une méthode pour produire de tels segments à partir de corpus alignés au niveau des mots. On présente également un modèle de traduction statistique capable de tenir compte de tels segments, de même qu’une méthode d’apprentissage des paramètres du modèle visant à maximiser l’exactitude des traductions produites, telle que mesurée avec la métrique NIST. Les traductions optimales sont produites par le biais d’une recherche en faisceau. On présente finalement des résultats expérimentaux, qui démontrent comment la méthode proposée permet une meilleure généralisation à partir des données d’entraînement.