Large Language Models (LLMs) are showing emerging abilities, and one of the latest recognized ones deals with their ability to reason and answer questions from tabular data. Although there are some available datasets to assess question answering systems on tabular data, they are not large and diverse enough to properly assess the capabilities of LLMs. To this end, we propose DataBench, a benchmark composed of 65 real-world datasets over several domains, including 20 human-generated questions per dataset, totaling 1300 questions and answers overall. Using this benchmark, we perform a large-scale empirical comparison of several open and closed source models, including both code-generating and in-context learning models. The results highlight the current gap between open-source and closed-source models, with all types of model having room for improvement even in simple boolean questions or involving a single column.
This work presents the proposed systems of the SINAI team for the subtask A of the Task 8 in SemEval 2024. We present the evaluation of two disparate systems, and our final submitted system. We claim that the perplexity value of a text may be used as classification signal. Accordingly, we conduct a study on the utility of perplexity for discerning text authorship, and we perform a comparative analysis of the results obtained on the datasets of the task. This comparative evaluation includes results derived from the systems evaluated, such as fine-tuning using an XLM-RoBERTa-Large transformer or using perplexity as a classification criterion. In addition, we discuss the results reached on the test set, where we show that there is large differences among the language probability distribution of the training and test sets. These analysis allows us to open new research lines to improve the detection of machine-generated text.
The annotation of ambiguous or subjective NLP tasks is usually addressed by various annotators. In most datasets, these annotations are aggregated into a single ground truth. However, this omits divergent opinions of annotators, hence missing individual perspectives. We propose FLEAD (Federated Learning for Exploiting Annotators’ Disagreements), a methodology built upon federated learning to independently learn from the opinions of all the annotators, thereby leveraging all their underlying information without relying on a single ground truth. We conduct an extensive experimental study and analysis in diverse text classification tasks to show the contribution of our approach with respect to mainstream approaches based on majority voting and other recent methodologies that also learn from annotator disagreements.
Language models are susceptible to vulnerability through adversarial attacks, using manipulations of the input data to disrupt their performance. Accordingly, it represents a cibersecurity leak. Data manipulations are intended to be unidentifiable by the learning model and by humans, small changes can disturb the final label of a classification task. Hence, we propose a novel attack built upon explainability methods to identify the salient lexical units to alter in order to flip the classification label. We asses our proposal on a disinformation dataset, and we show that our attack reaches high balance among stealthiness and efficiency.
In this paper we present TweetNLP, an integrated platform for Natural Language Processing (NLP) in social media. TweetNLP supports a diverse set of NLP tasks, including generic focus areas such as sentiment analysis and named entity recognition, as well as social media-specific tasks such as emoji prediction and offensive language identification. Task-specific systems are powered by reasonably-sized Transformer-based language models specialized on social media text (in particular, Twitter) which can be run without the need for dedicated hardware or cloud services. The main contributions of TweetNLP are: (1) an integrated Python library for a modern toolkit supporting social media analysis using our various task-specific models adapted to the social domain; (2) an interactive online demo for codeless experimentation using our models; and (3) a tutorial covering a wide variety of typical social media applications.
In this paper, we describe our participation in WASSA 2018 Implicit Emotion Shared Task (IEST 2018). We claim that the use of emotional external knowledge may enhance the performance and the capacity of generalization of an emotion classification system based on neural networks. Accordingly, we submitted four deep learning systems grounded in a sequence encoding layer. They mainly differ in the feature vector space and the recurrent neural network used in the sequence encoding layer. The official results show that the systems that used emotional external knowledge have a higher capacity of generalization, hence our claim holds.
We propose to move from Open Information Extraction (OIE) ahead to Open Knowledge Representation (OKR), aiming to represent information conveyed jointly in a set of texts in an open text-based manner. We do so by consolidating OIE extractions using entity and predicate coreference, while modeling information containment between coreferring elements via lexical entailment. We suggest that generating OKR structures can be a useful step in the NLP pipeline, to give semantic applications an easy handle on consolidated information across multiple texts.
The Story Cloze test is a recent effort in providing a common test scenario for text understanding systems. As part of the LSDSem 2017 shared task, we present a system based on a deep learning architecture combined with a rich set of manually-crafted linguistic features. The system outperforms all known baselines for the task, suggesting that the chosen approach is promising. We additionally present two methods for generating further training data based on stories from the ROCStories corpus.