Faeze Brahman


2024

pdf bib
Tailoring with Targeted Precision: Edit-Based Agents for Open-Domain Procedure Customization
Yash Kumar Lal | Li Zhang | Faeze Brahman | Bodhisattwa Prasad Majumder | Peter Clark | Niket Tandon
Findings of the Association for Computational Linguistics ACL 2024

How-to procedures, such as how to plant a garden, are now used by millions of users, but sometimes need customizing to meet a user’s specific needs, e.g., planting a garden without pesticides. Our goal is to measure and improve an LLM’s ability to perform such customization. Our approach is to test several simple multi-LLM-agent architectures for customization, as well as an end-to-end LLM, using a new evaluation set, called CustomPlans, of over 200 WikiHow procedures each with a customization need. We find that a simple architecture with two LLM agents used sequentially performs best, one that edits a generic how-to procedure and one that verifies its executability, significantly outperforming (10.5% absolute) an end-to-end prompted LLM. This suggests that LLMs can be configured reasonably effectively for procedure customization. This also suggests that multi-agent editing architectures may be worth exploring further for other customization applications (e.g. coding, creative writing) in the future.

pdf bib
Impossible Distillation for Paraphrasing and Summarization: How to Make High-quality Lemonade out of Small, Low-quality Model
Jaehun Jung | Peter West | Liwei Jiang | Faeze Brahman | Ximing Lu | Jillian Fisher | Taylor Sorensen | Yejin Choi
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

We present Impossible Distillation, a novel framework for paraphrasing and sentence summarization, that distills a high-quality dataset and model from a low-quality teacher that itself cannot perform these tasks. Unlike prior works that rely on an extreme-scale teacher model (e.g., GPT3) or task-specific architecture, we hypothesize and verify the paraphrastic proximity intrinsic to pre-trained LMs (e.g., GPT2), where paraphrases occupy a proximal subspace in the LM distribution. By identifying and distilling generations from these subspaces, Impossible Distillation produces a high-quality dataset and model even from GPT2-scale LMs. We evaluate our method on multiple benchmarks spanning unconstrained / syntax-controlled paraphrase generation and sentence summarization. Our model with 770M parameters consistently outperforms strong baselines, including models distilled from ChatGPT, and sometimes, even ChatGPT itself. Also, we find that our distilled dataset from 1.5B LMs exhibits higher diversity and fidelity than up to 13 times larger datasets.

pdf bib
MacGyver: Are Large Language Models Creative Problem Solvers?
Yufei Tian | Abhilasha Ravichander | Lianhui Qin | Ronan Le Bras | Raja Marjieh | Nanyun Peng | Yejin Choi | Thomas Griffiths | Faeze Brahman
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

We explore the creative problem-solving capabilities of modern LLMs in a novel constrained setting. To this end, we create MACGYVER, an automatically generated dataset consisting of over 1,600 real-world problems deliberately designed to trigger innovative usage of objects and necessitate out-of-the-box thinking. We then present our collection to both LLMs and humans to compare and contrast their problem-solving abilities. MACGYVER is challenging for both groups, but in unique and complementary ways. For instance, humans excel in tasks they are familiar with but struggle with domain-specific knowledge, leading to a higher variance. In contrast, LLMs, exposed to a variety of specialized knowledge, attempt broader problems but fail by proposing physically-infeasible actions. Finally, we provide a detailed error analysis of LLMs, and demonstrate the potential of enhancing their problem-solving ability with novel prompting techniques such as iterative step-wise reflection and divergent-convergent thinking.This work (1) introduces a fresh arena for intelligent agents focusing on intricate aspects of physical reasoning, planning, and unconventional thinking, which supplements the existing spectrum of machine intelligence; and (2) provides insight into the constrained problem-solving capabilities of both humans and AI.

pdf bib
UNcommonsense Reasoning: Abductive Reasoning about Uncommon Situations
Wenting Zhao | Justin Chiu | Jena Hwang | Faeze Brahman | Jack Hessel | Sanjiban Choudhury | Yejin Choi | Xiang Li | Alane Suhr
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Language technologies that accurately model the dynamics of events must perform commonsense reasoning. Existing work evaluating commonsense reasoning focuses on making inferences about common, everyday situations. To instead investigate the ability to model unusual, unexpected, and unlikely situations, we explore the task of uncommonsense abductive reasoning. Given a piece of context with an unexpected outcome, this task requires reasoning abductively to generate an explanation that makes the unexpected outcome more likely in the context. To this end, we curate and release a new English language corpus called UNcommonsense. We characterize the performance differences between human explainers and the best-performing large language models, finding that model-enhanced human-written explanations achieve the highest quality by trading off between specificity and diversity. Finally, we experiment with several imitation learning algorithms to train open and accessible language models on this task. When compared with the vanilla supervised fine-tuning approach, these methods consistently reduce lose rates on both common and uncommonsense abductive reasoning judged by human evaluators.

pdf bib
Agent Lumos: Unified and Modular Training for Open-Source Language Agents
Da Yin | Faeze Brahman | Abhilasha Ravichander | Khyathi Chandu | Kai-Wei Chang | Yejin Choi | Bill Yuchen Lin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Closed-source agents suffer from several issues such as a lack of affordability, transparency, and reproducibility, particularly on complex interactive tasks. This motivates the development of open-source alternatives. We introduce Lumos, one of the first frameworks for training open-source LLM-based agents. Lumos features a learnable, unified and modular architecture with a planning module that learns high-level subgoal generation, and a grounding module trained to translate these into the actions using various tools in the execution module. The design allows for modular upgrades and wider applicability to diverse interactive tasks. To foster generalizable agent learning, we collect large-scale, unified, and high-quality training annotations derived from diverse ground-truth reasoning rationales across various complex interactive tasks. On 9 datasets, Lumos exhibits several key advantages: (1) Lumos excels multiple larger open-source agents on the held-out datasets (unused for training) for each task type. Lumos even surpasses GPT agents on QA and web tasks; (2) Lumos outperforms open-source agents produced by chain-of-thoughts and unmodularized integrated training; and (3) Lumos effectively generalizes to unseen tasks, outperforming 33B-scale agents and domain-specific agents. Code and data will be released.

2023

pdf bib
REV: Information-Theoretic Evaluation of Free-Text Rationales
Hanjie Chen | Faeze Brahman | Xiang Ren | Yangfeng Ji | Yejin Choi | Swabha Swayamdipta
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Generating free-text rationales is a promising step towards explainable NLP, yet evaluating such rationales remains a challenge. Existing metrics have mostly focused on measuring the association between the rationale and a given label. We argue that an ideal metric should focus on the new information uniquely provided in the rationale that is otherwise not provided in the input or the label. We investigate this research problem from an information-theoretic perspective using conditional V-information (Hewitt et al., 2021). More concretely, we propose a metric called REV (Rationale Evaluation with conditional V-information), to quantify the amount of new, label-relevant information in a rationale beyond the information already available in the input or the label. Experiments across four benchmarks with reasoning tasks, including chain-of-thought, demonstrate the effectiveness of REV in evaluating rationale-label pairs, compared to existing metrics. We further demonstrate REV is consistent with human judgments on rationale evaluations and provides more sensitive measurements of new information in free-text rationales. When used alongside traditional performance metrics, REV provides deeper insights into models’ reasoning and prediction processes.

pdf bib
STEER: Unified Style Transfer with Expert Reinforcement
Skyler Hallinan | Faeze Brahman | Ximing Lu | Jaehun Jung | Sean Welleck | Yejin Choi
Findings of the Association for Computational Linguistics: EMNLP 2023

While text style transfer has many applications across natural language processing, the core premise of transferring from a single source style is unrealistic in a real-world setting. In this work, we focus on arbitrary style transfer: rewriting a text from an arbitrary, unknown style to a target style. We propose STEER: Unified Style Transfer with Expert Reinforcement, a unified frame-work developed to overcome the challenge of limited parallel data for style transfer. STEER involves automatically generating a corpus of style-transfer pairs using a product of experts during decoding. The generated offline data is then used to pre-train an initial policy before switching to online, off-policy reinforcement learning for further improvements via fine-grained reward signals. STEER is unified and can transfer to multiple target styles from an arbitrary, unknown source style, making it particularly flexible and efficient. Experimental results on a challenging dataset with text from a diverse set of styles demonstrate state-of-the-art results compared to competitive baselines. Remarkably, STEER outperforms the 175B parameter instruction-tuned GPT-3 on overall style transfer quality, despite being 226 times smaller in size. We also show STEER is robust, maintaining its style transfer capabilities on out-of-domain data, and surpassing nearly all baselines across various styles. The success of our method highlights the potential of RL algorithms when augmented with controllable decoding to overcome the challenge of limited data supervision.

pdf bib
Affective and Dynamic Beam Search for Story Generation
Tenghao Huang | Ehsan Qasemi | Bangzheng Li | He Wang | Faeze Brahman | Muhao Chen | Snigdha Chaturvedi
Findings of the Association for Computational Linguistics: EMNLP 2023

Storytelling’s captivating potential makes it a fascinating research area, with implications for entertainment, education, therapy, and cognitive studies. In this paper, we propose Affective Story Generator (AffGen) for generating interesting narratives. AffGen introduces ‘intriguing twists’ in narratives by employing two novel techniques—Dynamic Beam Sizing and Affective Reranking. Dynamic Beam Sizing encourages less predictable, more captivating word choices using a contextual multi-arm bandit model. Affective Reranking prioritizes sentence candidates based on affect intensity. Our empirical evaluations, both automatic and human, demonstrate AffGen’s superior performance over existing baselines in generating affectively charged and interesting narratives. Our ablation study and analysis provide insights into the strengths and weaknesses of AffGen.

pdf bib
What Makes it Ok to Set a Fire? Iterative Self-distillation of Contexts and Rationales for Disambiguating Defeasible Social and Moral Situations
Kavel Rao | Liwei Jiang | Valentina Pyatkin | Yuling Gu | Niket Tandon | Nouha Dziri | Faeze Brahman | Yejin Choi
Findings of the Association for Computational Linguistics: EMNLP 2023

Moral or ethical judgments rely heavily on the specific contexts in which they occur. Understanding varying shades of defeasible contextualizations (i.e., additional information that strengthens or attenuates the moral acceptability of an action) is critical to accurately represent the subtlety and intricacy of grounded human moral judgment in real-life scenarios. We introduce defeasible moral reasoning: a task to provide grounded contexts that make an action more or less morally acceptable, along with commonsense rationales that justify the reasoning. To elicit high-quality task data, we take an iterative self-distillation approach that starts from a small amount of unstructured seed knowledge from GPT-3 and then alternates between (1) self-distillation from student models; (2) targeted filtering with a critic model trained by human judgment (to boost validity) and NLI (to boost diversity); (3) self-imitation learning (to amplify the desired data quality). This process yields a student model that produces defeasible contexts with improved validity, diversity, and defeasibility. From this model we distill a high-quality dataset, 𝛿-Rules-of-Thumb, of 1.2M entries of contextualizations and rationales for 115K defeasible moral actions rated highly by human annotators 85.9% to 99.8% of the time. Using 𝛿-RoT we obtain a final student model that wins over all intermediate student models by a notable margin.

pdf bib
Inference-Time Policy Adapters (IPA): Tailoring Extreme-Scale LMs without Fine-tuning
Ximing Lu | Faeze Brahman | Peter West | Jaehun Jung | Khyathi Chandu | Abhilasha Ravichander | Prithviraj Ammanabrolu | Liwei Jiang | Sahana Ramnath | Nouha Dziri | Jillian Fisher | Bill Lin | Skyler Hallinan | Lianhui Qin | Xiang Ren | Sean Welleck | Yejin Choi
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

While extreme-scale language models have demonstrated exceptional performance on a variety of language tasks, the degree of control over these language models through pure prompting can often be limited. Directly fine-tuning such language models can be effective for tailoring them, but it can be either extremely costly (e.g., GPT-3) or not even feasible for the broader community (e.g., GPT-4). We propose Inference-time Policy Adapters (IPA), which efficiently tailors a language model such as GPT-3 without fine-tuning it. IPA guides a large base model during decoding time through a lightweight policy adapter trained to optimize an arbitrary user objective with reinforcement learning. On five challenging text generation tasks, such as toxicity reduction and lexically constrained generation, IPA consistently brings significant improvements over off-the-shelf language models. It outperforms competitive baseline methods, sometimes even including expensive fine-tuning. In particular, tailoring GPT-2 with IPA can outperform GPT-3, while tailoring GPT-3 with IPA brings a major performance boost over GPT-3 (and sometimes even over GPT-4). Our promising results highlight the potential of IPA as a lightweight alternative to tailoring extreme-scale language models.

2022

pdf bib
Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations
Jaehun Jung | Lianhui Qin | Sean Welleck | Faeze Brahman | Chandra Bhagavatula | Ronan Le Bras | Yejin Choi
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Pre-trained language models (LMs) struggle with consistent reasoning; recently, prompting LMs to generate explanations that self-guide the inference has emerged as a promising direction to amend this. However, these approaches are fundamentally bounded by the correctness of explanations, which themselves are often noisy and inconsistent. In this work, we develop Maieutic Prompting, which aims to infer a correct answer to a question even from the unreliable generations of LM. Maieutic Prompting induces a tree of explanations abductively (e.g. X is true, because ...) and recursively, then frames the inference as a satisfiability problem over these explanations and their logical relations. We test Maieutic Prompting for true/false QA on three challenging benchmarks that require complex commonsense reasoning. Maieutic Prompting achieves up to 20% better accuracy than state-of-the-art prompting methods, and as a fully unsupervised approach, performs competitively with supervised models. We also show that Maieutic Prompting improves robustness in inference while providing interpretable rationales.

pdf bib
Towards Inter-character Relationship-driven Story Generation
Anvesh Rao Vijjini | Faeze Brahman | Snigdha Chaturvedi
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

In this paper, we introduce the task of modeling interpersonal relationships for story generation. For addressing this task, we propose Relationships as Latent Variables for Story Generation, (ReLiSt). ReLiSt generates stories sentence by sentence and has two major components - a relationship selector and a story continuer. The relationship selector specifies a latent variable to pick the relationship to exhibit in the next sentence and the story continuer generates the next sentence while expressing the selected relationship in a coherent way. Our automatic and human evaluations demonstrate that ReLiSt is able to generate stories with relationships that are more faithful to desired relationships while maintaining the content quality. The relationship assignments to sentences during inference brings interpretability to ReLiSt.

pdf bib
Revisiting Generative Commonsense Reasoning: A Pre-Ordering Approach
Chao Zhao | Faeze Brahman | Tenghao Huang | Snigdha Chaturvedi
Findings of the Association for Computational Linguistics: NAACL 2022

Pre-trained models (PTMs) have lead to great improvements in natural language generation (NLG). However, it is still unclear how much commonsense knowledge they possess. With the goal of evaluating commonsense knowledge of NLG models, recent work has proposed the problem of generative commonsense reasoning, e.g., to compose a logical sentence given a set of unordered concepts. Existing approaches to this problem hypothesize that PTMs lack sufficient parametric knowledge for this task, which can be overcome by introducing external knowledge or task-specific pre-training objectives. Different from this trend, we argue that PTM’s inherent ability for generative commonsense reasoning is underestimated due to the order-agnostic property of its input. In particular, we hypothesize that the order of the input concepts can affect the PTM’s ability to utilize its commonsense knowledge. To this end, we propose a pre-ordering approach to elaborately manipulate the order of the given concepts before generation. Experiments show that our approach can outperform the more sophisticated models that have access to a lot of external data and resources.

pdf bib
NarraSum: A Large-Scale Dataset for Abstractive Narrative Summarization
Chao Zhao | Faeze Brahman | Kaiqiang Song | Wenlin Yao | Dian Yu | Snigdha Chaturvedi
Findings of the Association for Computational Linguistics: EMNLP 2022

Narrative summarization aims to produce a distilled version of a narrative to describe its most salient events and characters. Writing a summary for a narrative is challenging as it requires an understanding of event causality and character behaviors. To encourage research in this direction, we propose NarraSum, a large-scale narrative summarization dataset. It contains 122K narratives, which are collected from the synopses of movies and TV episodes with diverse genres, and their corresponding abstractive summaries. Experiments show that there is a large performance gap between humans and the state-of-the-art summarization models on NarraSum. We hope that this dataset will promote future research in summarization, as well as broader studies of natural language understanding and generation. The dataset is available at https://github.com/zhaochaocs/narrasum.

pdf bib
Grounded Keys-to-Text Generation: Towards Factual Open-Ended Generation
Faeze Brahman | Baolin Peng | Michel Galley | Sudha Rao | Bill Dolan | Snigdha Chaturvedi | Jianfeng Gao
Findings of the Association for Computational Linguistics: EMNLP 2022

Large pre-trained language models have recently enabled open-ended generation frameworks (e.g., prompt-to-text NLG) to tackle a variety of tasks going beyond the traditional data-to-text generation. While this framework is more general, it is under-specified and often leads to a lack of controllability restricting their real-world usage. We propose a new grounded keys-to-text generation task: the task is to generate a factual description about an entity given a set of guiding keys, and grounding passages. To address this task, we introduce a new dataset, called EntDeGen. Inspired by recent QA-based evaluation measures, we propose an automatic metric, MAFE, for factual correctness of generated descriptions. Our EntDescriptor model is equipped with strong rankers to fetch helpful passages and generate entity descriptions. Experimental result shows a good correlation (60.14) between our proposed metric and human judgments of factuality. Our rankers significantly improved the factual correctness of generated descriptions (15.95% and 34.51% relative gains in recall and precision). Finally, our ablation study highlights the benefit of combining keys and groundings.

pdf bib
Proceedings of the 4th Workshop of Narrative Understanding (WNU2022)
Elizabeth Clark | Faeze Brahman | Mohit Iyyer
Proceedings of the 4th Workshop of Narrative Understanding (WNU2022)

2021

pdf bib
ParsiNLU: A Suite of Language Understanding Challenges for Persian
Daniel Khashabi | Arman Cohan | Siamak Shakeri | Pedram Hosseini | Pouya Pezeshkpour | Malihe Alikhani | Moin Aminnaseri | Marzieh Bitaab | Faeze Brahman | Sarik Ghazarian | Mozhdeh Gheini | Arman Kabiri | Rabeeh Karimi Mahabagdi | Omid Memarrast | Ahmadreza Mosallanezhad | Erfan Noury | Shahab Raji | Mohammad Sadegh Rasooli | Sepideh Sadeghi | Erfan Sadeqi Azer | Niloofar Safi Samghabadi | Mahsa Shafaei | Saber Sheybani | Ali Tazarv | Yadollah Yaghoobzadeh
Transactions of the Association for Computational Linguistics, Volume 9

Despite the progress made in recent years in addressing natural language understanding (NLU) challenges, the majority of this progress remains to be concentrated on resource-rich languages like English. This work focuses on Persian language, one of the widely spoken languages in the world, and yet there are few NLU datasets available for this language. The availability of high-quality evaluation datasets is a necessity for reliable assessment of the progress on different NLU tasks and domains. We introduce ParsiNLU, the first benchmark in Persian language that includes a range of language understanding tasks—reading comprehension, textual entailment, and so on. These datasets are collected in a multitude of ways, often involving manual annotations by native speakers. This results in over 14.5k new instances across 6 distinct NLU tasks. Additionally, we present the first results on state-of-the-art monolingual and multilingual pre-trained language models on this benchmark and compare them with human performance, which provides valuable insights into our ability to tackle natural language understanding challenges in Persian. We hope ParsiNLU fosters further research and advances in Persian language understanding.1

pdf bib
Proceedings of the Third Workshop on Narrative Understanding
Nader Akoury | Faeze Brahman | Snigdha Chaturvedi | Elizabeth Clark | Mohit Iyyer | Lara J. Martin
Proceedings of the Third Workshop on Narrative Understanding

pdf bib
“Let Your Characters Tell Their Story”: A Dataset for Character-Centric Narrative Understanding
Faeze Brahman | Meng Huang | Oyvind Tafjord | Chao Zhao | Mrinmaya Sachan | Snigdha Chaturvedi
Findings of the Association for Computational Linguistics: EMNLP 2021

When reading a literary piece, readers often make inferences about various characters’ roles, personalities, relationships, intents, actions, etc. While humans can readily draw upon their past experiences to build such a character-centric view of the narrative, understanding characters in narratives can be a challenging task for machines. To encourage research in this field of character-centric narrative understanding, we present LiSCU – a new dataset of literary pieces and their summaries paired with descriptions of characters that appear in them. We also introduce two new tasks on LiSCU: Character Identification and Character Description Generation. Our experiments with several pre-trained language models adapted for these tasks demonstrate that there is a need for better models of narrative comprehension.

pdf bib
Uncovering Implicit Gender Bias in Narratives through Commonsense Inference
Tenghao Huang | Faeze Brahman | Vered Shwartz | Snigdha Chaturvedi
Findings of the Association for Computational Linguistics: EMNLP 2021

Pre-trained language models learn socially harmful biases from their training corpora, and may repeat these biases when used for generation. We study gender biases associated with the protagonist in model-generated stories. Such biases may be expressed either explicitly (“women can’t park”) or implicitly (e.g. an unsolicited male character guides her into a parking space). We focus on implicit biases, and use a commonsense reasoning engine to uncover them. Specifically, we infer and analyze the protagonist’s motivations, attributes, mental states, and implications on others. Our findings regarding implicit biases are in line with prior work that studied explicit biases, for example showing that female characters’ portrayal is centered around appearance, while male figures’ focus on intellect.

pdf bib
Is Everything in Order? A Simple Way to Order Sentences
Somnath Basu Roy Chowdhury | Faeze Brahman | Snigdha Chaturvedi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The task of organizing a shuffled set of sentences into a coherent text has been used to evaluate a machine’s understanding of causal and temporal relations. We formulate the sentence ordering task as a conditional text-to-marker generation problem. We present Reorder-BART (Re-BART) that leverages a pre-trained Transformer-based model to identify a coherent order for a given set of shuffled sentences. The model takes a set of shuffled sentences with sentence-specific markers as input and generates a sequence of position markers of the sentences in the ordered text. Re-BART achieves the state-of-the-art performance across 7 datasets in Perfect Match Ratio (PMR) and Kendall’s tau. We perform evaluations in a zero-shot setting, showcasing that our model is able to generalize well across other datasets. We additionally perform several experiments to understand the functioning and limitations of our framework.

2020

pdf bib
Cue Me In: Content-Inducing Approaches to Interactive Story Generation
Faeze Brahman | Alexandru Petrusca | Snigdha Chaturvedi
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Automatically generating stories is a challenging problem that requires producing causally related and logical sequences of events about a topic. Previous approaches in this domain have focused largely on one-shot generation, where a language model outputs a complete story based on limited initial input from a user. Here, we instead focus on the task of interactive story generation, where the user provides the model mid-level sentence abstractions in the form of cue phrases during the generation process. This provides an interface for human users to guide the story generation. We present two content-inducing approaches to effectively incorporate this additional information. Experimental results from both automatic and human evaluations show that these methods produce more topically coherent and personalized stories compared to baseline methods.

pdf bib
Modeling Protagonist Emotions for Emotion-Aware Storytelling
Faeze Brahman | Snigdha Chaturvedi
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Emotions and their evolution play a central role in creating a captivating story. In this paper, we present the first study on modeling the emotional trajectory of the protagonist in neural storytelling. We design methods that generate stories that adhere to given story titles and desired emotion arcs for the protagonist. Our models include Emotion Supervision (EmoSup) and two Emotion-Reinforced (EmoRL) models. The EmoRL models use special rewards designed to regularize the story generation process through reinforcement learning. Our automatic and manual evaluations demonstrate that these models are significantly better at generating stories that follow the desired emotion arcs compared to baseline methods, without sacrificing story quality.
Search
Venues