The potential for improvements brought by Large Language Models (LLMs) in Text-to-SQL systems is mostly assessed on monolingual English datasets. However, LLMs’ performance for other languages remains vastly unexplored. In this work, we release the StatBot.Swiss dataset, the first bilingual benchmark for evaluating Text-to-SQL systems based on real-world applications. The StatBot.Swiss dataset contains 455 natural language/SQL-pairs over 35 big databases with varying level of complexity for both English and German.We evaluate the performance of state-of-the-art LLMs such as GPT-3.5-Turbo and mixtral-8x7b-instruct for the Text-to-SQL translation task using an in-context learning approach. Our experimental analysis illustrates that current LLMs struggle to generalize well in generating SQL queries on our novel bilingual dataset.
In computational linguistics, the common practice is to “clean” disfluent content from spontaneous speech. However, we hypothesize that these disfluencies might serve as more than mere noise, potentially acting as informative cues. We use a range of pre-trained models for a reading comprehension task involving disfluent queries, specifically featuring different types of speech repairs. The findings indicate that certain disfluencies can indeed improve model performance, particularly those stemming from context-based adjustments. However, large-scale language models struggle to handle repairs involving decision-making or the correction of lexical or syntactic errors, suggesting a crucial area for potential improvement. This paper thus highlights the importance of a nuanced approach to disfluencies, advocating for their potential utility in enhancing model performance rather than their removal.
Recent transformer-based models have made significant strides in generating radiology reports from chest X-ray images. However, a prominent challenge remains; these models often lack prior knowledge, resulting in the generation of synthetic reports that mistakenly reference non-existent prior exams. This discrepancy can be attributed to a knowledge gap between radiologists and the generation models. While radiologists possess patient-specific prior information, the models solely receive X-ray images at a specific time point. To tackle this issue, we propose a novel approach that leverages a rule-based labeler to extract comparison prior information from radiology reports. This extracted comparison prior is then seamlessly integrated into state-of-the-art transformer-based models, enabling them to produce more realistic and comprehensive reports. Our method is evaluated on English report datasets, such as IU X-ray and MIMIC-CXR. The results demonstrate that our approach surpasses baseline models in terms of natural language generation metrics. Notably, our model generates reports that are free from false references to non-existent prior exams, setting it apart from previous models. By addressing this limitation, our approach represents a significant step towards bridging the gap between radiologists and generation models in the domain of medical report generation.
Inspired by Curriculum Learning, we propose a consecutive (i.e., image-to-text-to-text) generation framework where we divide the problem of radiology report generation into two steps. Contrary to generating the full radiology report from the image at once, the model generates global concepts from the image in the first step and then reforms them into finer and coherent texts using transformer-based architecture. We follow the transformer-based sequence-to-sequence paradigm at each step. We improve upon the state-of-the-art on two benchmark datasets.
Learning what to share between tasks has become a topic of great importance, as strategic sharing of knowledge has been shown to improve downstream task performance. This is particularly important for multilingual applications, as most languages in the world are under-resourced. Here, we consider the setting of training models on multiple different languages at the same time, when little or no data is available for languages other than English. We show that this challenging setup can be approached using meta-learning: in addition to training a source language model, another model learns to select which training instances are the most beneficial to the first. We experiment using standard supervised, zero-shot cross-lingual, as well as few-shot cross-lingual settings for different natural language understanding tasks (natural language inference, question answering). Our extensive experimental setup demonstrates the consistent effectiveness of meta-learning for a total of 15 languages. We improve upon the state-of-the-art for zero-shot and few-shot NLI (on MultiNLI and XNLI) and QA (on the MLQA dataset). A comprehensive error analysis indicates that the correlation of typological features between languages can partly explain when parameter sharing learned via meta-learning is beneficial.
Existing named entity recognition (NER) systems rely on large amounts of human-labeled data for supervision. However, obtaining large-scale annotated data is challenging particularly in specific domains like health-care, e-commerce and so on. Given the availability of domain specific knowledge resources, (e.g., ontologies, dictionaries), distant supervision is a solution to generate automatically labeled training data to reduce human effort. The outcome of distant supervision for NER, however, is often noisy. False positive and false negative instances are the main issues that reduce performance on this kind of auto-generated data. In this paper, we explore distant supervision in a supervised setup. We adopt a technique of partial annotation to address false negative cases and implement a reinforcement learning strategy with a neural network policy to identify false positive instances. Our results establish a new state-of-the-art on four benchmark datasets taken from different domains and different languages. We then go on to show that our model reduces the amount of manually annotated data required to perform NER in a new domain.
We investigate the use of different syntactic dependency representations in a neural relation classification task and compare the CoNLL, Stanford Basic and Universal Dependencies schemes. We further compare with a syntax-agnostic approach and perform an error analysis in order to gain a better understanding of the results.
This article presents the SIRIUS-LTG system for the Fact Extraction and VERification (FEVER) Shared Task. It consists of three components: 1) Wikipedia Page Retrieval: First we extract the entities in the claim, then we find potential Wikipedia URI candidates for each of the entities using a SPARQL query over DBpedia 2) Sentence selection: We investigate various techniques i.e. Smooth Inverse Frequency (SIF), Word Mover’s Distance (WMD), Soft-Cosine Similarity, Cosine similarity with unigram Term Frequency Inverse Document Frequency (TF-IDF) to rank sentences by their similarity to the claim. 3) Textual Entailment: We compare three models for the task of claim classification. We apply a Decomposable Attention (DA) model (Parikh et al., 2016), a Decomposed Graph Entailment (DGE) model (Khot et al., 2018) and a Gradient-Boosted Decision Trees (TalosTree) model (Sean et al., 2017) for this task. The experiments show that the pipeline with simple Cosine Similarity using TFIDF in sentence selection along with DA model as labelling model achieves the best results on the development set (F1 evidence: 32.17, label accuracy: 59.61 and FEVER score: 0.3778). Furthermore, it obtains 30.19, 48.87 and 36.55 in terms of F1 evidence, label accuracy and FEVER score, respectively, on the test set. Our system ranks 15th among 23 participants in the shared task prior to any human-evaluation of the evidence.
This article presents the SIRIUS-LTG-UiO system for the SemEval 2018 Task 7 on Semantic Relation Extraction and Classification in Scientific Papers. First we extract the shortest dependency path (sdp) between two entities, then we introduce a convolutional neural network (CNN) which takes the shortest dependency path embeddings as input and performs relation classification with differing objectives for each subtask of the shared task. This approach achieved overall F1 scores of 76.7 and 83.2 for relation classification on clean and noisy data, respectively. Furthermore, for combined relation extraction and classification on clean data, it obtained F1 scores of 37.4 and 33.6 for each phase. Our system ranks 3rd in all three sub-tasks of the shared task.