Gabriele Pergola


2024

pdf bib
Set-Aligning Framework for Auto-Regressive Event Temporal Graph Generation
Xingwei Tan | Yuxiang Zhou | Gabriele Pergola | Yulan He
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Event temporal graphs have been shown as convenient and effective representations of complex temporal relations between events in text. Recent studies, which employ pre-trained language models to auto-regressively generate linearised graphs for constructing event temporal graphs, have shown promising results. However, these methods have often led to suboptimal graph generation as the linearised graphs exhibit set characteristics which are instead treated sequentially by language models. This discrepancy stems from the conventional text generation objectives, leading to erroneous penalisation of correct predictions caused by the misalignment of elements in target sequences. To address these challenges, we reframe the task as a conditional set generation problem, proposing a Set-aligning Framework tailored for the effective utilisation of Large Language Models (LLMs). The framework incorporates data augmentations and set-property regularisations designed to alleviate text generation loss penalties associated with the linearised graph edge sequences, thus encouraging the generation of more relation edges. Experimental results show that our framework surpasses existing baselines for event temporal graph generation. Furthermore, under zero-shot settings, the structural knowledge introduced through our framework notably improves model generalisation, particularly when the training examples available are limited.

pdf bib
Leveraging ChatGPT in Pharmacovigilance Event Extraction: An Empirical Study
Zhaoyue Sun | Gabriele Pergola | Byron Wallace | Yulan He
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)

With the advent of large language models (LLMs), there has been growing interest in exploring their potential for medical applications. This research aims to investigate the ability of LLMs, specifically ChatGPT, in the context of pharmacovigilance event extraction, of which the main goal is to identify and extract adverse events or potential therapeutic events from textual medical sources. We conduct extensive experiments to assess the performance of ChatGPT in the pharmacovigilance event extraction task, employing various prompts and demonstration selection strategies. The findings demonstrate that while ChatGPT demonstrates reasonable performance with appropriate demonstration selection strategies, it still falls short compared to fully fine-tuned small models. Additionally, we explore the potential of leveraging ChatGPT for data augmentation. However, our investigation reveals that the inclusion of synthesized data into fine-tuning may lead to a decrease in performance, possibly attributed to noise in the ChatGPT-generated labels. To mitigate this, we explore different filtering strategies and find that, with the proper approach, more stable performance can be achieved, although constant improvement remains elusive.

pdf bib
DrugWatch: A Comprehensive Multi-Source Data Visualisation Platform for Drug Safety Information
Artem Bobrov | Domantas Saltenis | Zhaoyue Sun | Gabriele Pergola | Yulan He
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Drug safety research is crucial for maintaining public health, often requiring comprehensive data support. However, the resources currently available to the public are limited and fail to provide a comprehensive understanding of the relationship between drugs and their side effects. This paper introduces “DrugWatch”, an easy-to-use and interactive multi-source information visualisation platform for drug safety study. It allows users to understand common side effects of drugs and their statistical information, flexibly retrieve relevant medical reports, or annotate their own medical texts with our automated annotation tool. Supported by NLP technology and enriched with interactive visual components, we are committed to providing researchers and practitioners with a one-stop information analysis, retrieval, and annotation service. The demonstration video is available at https://www.youtube.com/watch?v=RTqDgxzETjw. We also deployed an online demonstration system at https://drugwatch.net/.

2023

pdf bib
NapSS: Paragraph-level Medical Text Simplification via Narrative Prompting and Sentence-matching Summarization
Junru Lu | Jiazheng Li | Byron Wallace | Yulan He | Gabriele Pergola
Findings of the Association for Computational Linguistics: EACL 2023

Accessing medical literature is difficult for laypeople as the content is written for specialists and contains medical jargon. Automated text simplification methods offer a potential means to address this issue. In this work, we propose a summarize-then-simplify two-stage strategy, which we call NapSS, identifying the relevant content to simplify while ensuring that the original narrative flow is preserved. In this approach, we first generate reference summaries via sentence matching between the original and the simplified abstracts. These summaries are then used to train an extractive summarizer, learning the most relevant content to be simplified. Then, to ensure the narrative consistency of the simplified text, we synthesize auxiliary narrative prompts combining key phrases derived from the syntactical analyses of the original text. Our model achieves results significantly better than the seq2seq baseline on an English medical corpus, yielding 3% 4% absolute improvements in terms of lexical similarity, and providing a further 1.1% improvement of SARI score when combined with the baseline. We also highlight shortcomings of existing evaluation methods, and introduce new metrics that take into account both lexical and high-level semantic similarity. A human evaluation conducted on a random sample of the test set further establishes the effectiveness of the proposed approach. Codes and models are released here: https://github.com/LuJunru/NapSS.

pdf bib
Disentangling Aspect and Stance via a Siamese Autoencoder for Aspect Clustering of Vaccination Opinions
Lixing Zhu | Runcong Zhao | Gabriele Pergola | Yulan He
Findings of the Association for Computational Linguistics: ACL 2023

Mining public opinions about vaccines from social media has been increasingly relevant to analyse trends in public debates and to provide quick insights to policy-makers. However, the application of existing models has been hindered by the wide variety of users’ attitudes and the new aspects continuously arising in the public debate. Existing approaches, frequently framed via well-known tasks, such as aspect classification or text span detection, make direct usage of the supervision information constraining the models to predefined aspect classes, while still not distinguishing those aspects from users’ stances. As a result, this has significantly hindered the dynamic integration of new aspects. We thus propose a model, namely Disentangled Opinion Clustering (DOC), for vaccination opinion mining from social media. DOC is able to disentangle users’ stances from opinions via a disentangling attention mechanism and a Swapping-Autoencoder, and is designed to process unseen aspect categories via a clustering approach, leveraging clustering-friendly representations induced by out-of-the-box Sentence-BERT encodings and disentangling mechanisms. We conduct a thorough experimental assessment demonstrating the benefit of the disentangling mechanisms and cluster-based approach on both the quality of aspect clusters and the generalization across new aspect categories, outperforming existing methodologies on aspect-based opinion mining.

pdf bib
Event Temporal Relation Extraction with Bayesian Translational Model
Xingwei Tan | Gabriele Pergola | Yulan He
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Existing models to extract temporal relations between events lack a principled method to incorporate external knowledge. In this study, we introduce Bayesian-Trans, a Bayesian learning-based method that models the temporal relation representations as latent variables and infers their values via Bayesian inference and translational functions. Compared to conventional neural approaches, instead of performing point estimation to find the best set parameters, the proposed model infers the parameters’ posterior distribution directly, enhancing the model’s capability to encode and express uncertainty about the predictions. Experimental results on the three widely used datasets show that Bayesian-Trans outperforms existing approaches for event temporal relation extraction. We additionally present detailed analyses on uncertainty quantification, comparison of priors, and ablation studies, illustrating the benefits of the proposed approach.

2022

pdf bib
Disentangled Learning of Stance and Aspect Topics for Vaccine Attitude Detection in Social Media
Lixing Zhu | Zheng Fang | Gabriele Pergola | Robert Procter | Yulan He
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Building models to detect vaccine attitudes on social media is challenging because of the composite, often intricate aspects involved, and the limited availability of annotated data. Existing approaches have relied heavily on supervised training that requires abundant annotations and pre-defined aspect categories. Instead, with the aim of leveraging the large amount of unannotated data now available on vaccination, we propose a novel semi-supervised approach for vaccine attitude detection, called VADet. A variational autoencoding architecture based on language models is employed to learn from unlabelled data the topical information of the domain. Then, the model is fine-tuned with a few manually annotated examples of user attitudes. We validate the effectiveness of VADet on our annotated data and also on an existing vaccination corpus annotated with opinions on vaccines. Our results show that VADet is able to learn disentangled stance and aspect topics, and outperforms existing aspect-based sentiment analysis models on both stance detection and tweet clustering.

pdf bib
PHEE: A Dataset for Pharmacovigilance Event Extraction from Text
Zhaoyue Sun | Jiazheng Li | Gabriele Pergola | Byron Wallace | Bino John | Nigel Greene | Joseph Kim | Yulan He
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

The primary goal of drug safety researchers and regulators is to promptly identify adverse drug reactions. Doing so may in turn prevent or reduce the harm to patients and ultimately improve public health. Evaluating and monitoring drug safety (i.e., pharmacovigilance) involves analyzing an ever growing collection of spontaneous reports from health professionals, physicians, and pharmacists, and information voluntarily submitted by patients. In this scenario, facilitating analysis of such reports via automation has the potential to rapidly identify safety signals. Unfortunately, public resources for developing natural language models for this task are scant. We present PHEE, a novel dataset for pharmacovigilance comprising over 5000 annotated events from medical case reports and biomedical literature, making it the largest such public dataset to date. We describe the hierarchical event schema designed to provide coarse and fine-grained information about patients’ demographics, treatments and (side) effects. Along with the discussion of the dataset, we present a thorough experimental evaluation of current state-of-the-art approaches for biomedical event extraction, point out their limitations, and highlight open challenges to foster future research in this area.

pdf bib
Event-Centric Question Answering via Contrastive Learning and Invertible Event Transformation
Junru Lu | Xingwei Tan | Gabriele Pergola | Lin Gui | Yulan He
Findings of the Association for Computational Linguistics: EMNLP 2022

Human reading comprehension often requires reasoning of event semantic relations in narratives, represented by Event-centric Question-Answering (QA). To address event-centric QA, we propose a novel QA model with contrastive learning and invertible event transformation, call TranCLR. Our proposed model utilizes an invertible transformation matrix to project semantic vectors of events into a common event embedding space, trained with contrastive learning, and thus naturally inject event semantic knowledge into mainstream QA pipelines. The transformation matrix is fine-tuned with the annotated event relation types between events that occurred in questions and those in answers, using event-aware question vectors. Experimental results on the Event Semantic Relation Reasoning (ESTER) dataset show significant improvements in both generative and extractive settings compared to the existing strong baselines, achieving over 8.4% gain in the token-level F1 score and 3.0% gain in Exact Match (EM) score under the multi-answer setting. Qualitative analysis reveals the high quality of the generated answers by TranCLR, demonstrating the feasibility of injecting event knowledge into QA model learning. Our code and models can be found at https://github.com/LuJunru/TranCLR.

2021

pdf bib
Topic-Driven and Knowledge-Aware Transformer for Dialogue Emotion Detection
Lixing Zhu | Gabriele Pergola | Lin Gui | Deyu Zhou | Yulan He
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Emotion detection in dialogues is challenging as it often requires the identification of thematic topics underlying a conversation, the relevant commonsense knowledge, and the intricate transition patterns between the affective states. In this paper, we propose a Topic-Driven Knowledge-Aware Transformer to handle the challenges above. We firstly design a topic-augmented language model (LM) with an additional layer specialized for topic detection. The topic-augmented LM is then combined with commonsense statements derived from a knowledge base based on the dialogue contextual information. Finally, a transformer-based encoder-decoder architecture fuses the topical and commonsense information, and performs the emotion label sequence prediction. The model has been experimented on four datasets in dialogue emotion detection, demonstrating its superiority empirically over the existing state-of-the-art approaches. Quantitative and qualitative results show that the model can discover topics which help in distinguishing emotion categories.

pdf bib
Position Bias Mitigation: A Knowledge-Aware Graph Model for Emotion Cause Extraction
Hanqi Yan | Lin Gui | Gabriele Pergola | Yulan He
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

The Emotion Cause Extraction (ECE) task aims to identify clauses which contain emotion-evoking information for a particular emotion expressed in text. We observe that a widely-used ECE dataset exhibits a bias that the majority of annotated cause clauses are either directly before their associated emotion clauses or are the emotion clauses themselves. Existing models for ECE tend to explore such relative position information and suffer from the dataset bias. To investigate the degree of reliance of existing ECE models on clause relative positions, we propose a novel strategy to generate adversarial examples in which the relative position information is no longer the indicative feature of cause clauses. We test the performance of existing models on such adversarial examples and observe a significant performance drop. To address the dataset bias, we propose a novel graph-based method to explicitly model the emotion triggering paths by leveraging the commonsense knowledge to enhance the semantic dependencies between a candidate clause and an emotion clause. Experimental results show that our proposed approach performs on par with the existing state-of-the-art methods on the original ECE dataset, and is more robust against adversarial attacks compared to existing models.

pdf bib
A Disentangled Adversarial Neural Topic Model for Separating Opinions from Plots in User Reviews
Gabriele Pergola | Lin Gui | Yulan He
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The flexibility of the inference process in Variational Autoencoders (VAEs) has recently led to revising traditional probabilistic topic models giving rise to Neural Topic Models (NTM). Although these approaches have achieved significant results, surprisingly very little work has been done on how to disentangle the latent topics. Existing topic models when applied to reviews may extract topics associated with writers’ subjective opinions mixed with those related to factual descriptions such as plot summaries in movie and book reviews. It is thus desirable to automatically separate opinion topics from plot/neutral ones enabling a better interpretability. In this paper, we propose a neural topic model combined with adversarial training to disentangle opinion topics from plot and neutral ones. We conduct an extensive experimental assessment introducing a new collection of movie and book reviews paired with their plots, namely MOBO dataset, showing an improved coherence and variety of topics, a consistent disentanglement rate, and sentiment classification performance superior to other supervised topic models.

pdf bib
Boosting Low-Resource Biomedical QA via Entity-Aware Masking Strategies
Gabriele Pergola | Elena Kochkina | Lin Gui | Maria Liakata | Yulan He
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Biomedical question-answering (QA) has gained increased attention for its capability to provide users with high-quality information from a vast scientific literature. Although an increasing number of biomedical QA datasets has been recently made available, those resources are still rather limited and expensive to produce; thus, transfer learning via pre-trained language models (LMs) has been shown as a promising approach to leverage existing general-purpose knowledge. However, fine-tuning these large models can be costly and time consuming and often yields limited benefits when adapting to specific themes of specialised domains, such as the COVID-19 literature. Therefore, to bootstrap further their domain adaptation, we propose a simple yet unexplored approach, which we call biomedical entity-aware masking (BEM) strategy, encouraging masked language models to learn entity-centric knowledge based on the pivotal entities characterizing the domain at hand, and employ those entities to drive the LM fine-tuning. The resulting strategy is a downstream process applicable to a wide variety of masked LMs, not requiring additional memory or components in the neural architectures. Experimental results show performance on par with the state-of-the-art models on several biomedical QA datasets.

pdf bib
Adversarial Learning of Poisson Factorisation Model for Gauging Brand Sentiment in User Reviews
Runcong Zhao | Lin Gui | Gabriele Pergola | Yulan He
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

In this paper, we propose the Brand-Topic Model (BTM) which aims to detect brand-associated polarity-bearing topics from product reviews. Different from existing models for sentiment-topic extraction which assume topics are grouped under discrete sentiment categories such as ‘positive’, ‘negative’ and ‘neural’, BTM is able to automatically infer real-valued brand-associated sentiment scores and generate fine-grained sentiment-topics in which we can observe continuous changes of words under a certain topic (e.g., ‘shaver’ or ‘cream’) while its associated sentiment gradually varies from negative to positive. BTM is built on the Poisson factorisation model with the incorporation of adversarial learning. It has been evaluated on a dataset constructed from Amazon reviews. Experimental results show that BTM outperforms a number of competitive baselines in brand ranking, achieving a better balance of topic coherence and unique-ness, and extracting better-separated polarity-bearing topics.

pdf bib
Extracting Event Temporal Relations via Hyperbolic Geometry
Xingwei Tan | Gabriele Pergola | Yulan He
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Detecting events and their evolution through time is a crucial task in natural language understanding. Recent neural approaches to event temporal relation extraction typically map events to embeddings in the Euclidean space and train a classifier to detect temporal relations between event pairs. However, embeddings in the Euclidean space cannot capture richer asymmetric relations such as event temporal relations. We thus propose to embed events into hyperbolic spaces, which are intrinsically oriented at modeling hierarchical structures. We introduce two approaches to encode events and their temporal relations in hyperbolic spaces. One approach leverages hyperbolic embeddings to directly infer event relations through simple geometrical operations. In the second one, we devise an end-to-end architecture composed of hyperbolic neural units tailored for the temporal relation extraction task. Thorough experimental assessments on widely used datasets have shown the benefits of revisiting the tasks on a different geometrical space, resulting in state-of-the-art performance on several standard metrics. Finally, the ablation study and several qualitative analyses highlighted the rich event semantics implicitly encoded into hyperbolic spaces.

2020

pdf bib
CHIME: Cross-passage Hierarchical Memory Network for Generative Review Question Answering
Junru Lu | Gabriele Pergola | Lin Gui | Binyang Li | Yulan He
Proceedings of the 28th International Conference on Computational Linguistics

We introduce CHIME, a cross-passage hierarchical memory network for question answering (QA) via text generation. It extends XLNet introducing an auxiliary memory module consisting of two components: the context memory collecting cross-passage evidences, and the answer memory working as a buffer continually refining the generated answers. Empirically, we show the efficacy of the proposed architecture in the multi-passage generative QA, outperforming the state-of-the-art baselines with better syntactically well-formed answers and increased precision in addressing the questions of the AmazonQA review dataset. An additional qualitative analysis revealed the interpretability introduced by the memory module.

2019

pdf bib
Neural Topic Model with Reinforcement Learning
Lin Gui | Jia Leng | Gabriele Pergola | Yu Zhou | Ruifeng Xu | Yulan He
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

In recent years, advances in neural variational inference have achieved many successes in text processing. Examples include neural topic models which are typically built upon variational autoencoder (VAE) with an objective of minimising the error of reconstructing original documents based on the learned latent topic vectors. However, minimising reconstruction errors does not necessarily lead to high quality topics. In this paper, we borrow the idea of reinforcement learning and incorporate topic coherence measures as reward signals to guide the learning of a VAE-based topic model. Furthermore, our proposed model is able to automatically separating background words dynamically from topic words, thus eliminating the pre-processing step of filtering infrequent and/or top frequent words, typically required for learning traditional topic models. Experimental results on the 20 Newsgroups and the NIPS datasets show superior performance both on perplexity and topic coherence measure compared to state-of-the-art neural topic models.