Gael Gendron


2024

pdf bib
Can Large Language Models Learn Independent Causal Mechanisms?
Gael Gendron | Bao Nguyen | Alex Peng | Michael Witbrock | Gillian Dobbie
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Despite impressive performance on language modelling and complex reasoning tasks, Large Language Models (LLMs) fall short on the same tasks in uncommon settings or with distribution shifts, exhibiting a lack of generalisation ability. By contrast, systems such as causal models, that learn abstract variables and causal relationships, can demonstrate increased robustness against changes in the distribution. One reason for this success is the existence and use of Independent Causal Mechanisms (ICMs) representing high-level concepts that only sparsely interact. In this work, we apply two concepts from causality to learn ICMs within LLMs. We develop a new LLM architecture composed of multiple sparsely interacting language modelling modules. We show that such causal constraints can improve out-of-distribution performance on abstract and causal reasoning tasks. We also investigate the level of independence and domain specialisation and show that LLMs rely on pre-trained partially domain-invariant mechanisms resilient to fine-tuning.

pdf bib
Abstract Meaning Representation-Based Logic-Driven Data Augmentation for Logical Reasoning
Qiming Bao | Alex Peng | Zhenyun Deng | Wanjun Zhong | Gael Gendron | Timothy Pistotti | Neset Tan | Nathan Young | Yang Chen | Yonghua Zhu | Paul Denny | Michael Witbrock | Jiamou Liu
Findings of the Association for Computational Linguistics: ACL 2024

Combining large language models with logical reasoning enhances their capacity to address problems in a robust and reliable manner. Nevertheless, the intricate nature of logical reasoning poses challenges when gathering reliable data from the web to build comprehensive training datasets, subsequently affecting performance on downstream tasks. To address this, we introduce a novel logic-driven data augmentation approach, AMR-LDA. AMR-LDA converts the original text into an Abstract Meaning Representation (AMR) graph, a structured semantic representation that encapsulates the logical structure of the sentence, upon which operations are performed to generate logically modified AMR graphs. The modified AMR graphs are subsequently converted back into text to create augmented data. Notably, our methodology is architecture-agnostic and enhances both generative large language models, such as GPT-3.5 and GPT-4, through prompt augmentation, and discriminative large language models through contrastive learning with logic-driven data augmentation. Empirical evidence underscores the efficacy of our proposed method with improvement in performance across seven downstream tasks, such as reading comprehension requiring logical reasoning, textual entailment, and natural language inference. Furthermore, our method leads on the ReClor leaderboard. The source code and data are publicly available