We present the HPLT (High Performance Language Technologies) language resources, a new massive multilingual dataset including both monolingual and bilingual corpora extracted from CommonCrawl and previously unused web crawls from the Internet Archive. We describe our methods for data acquisition, management and processing of large corpora, which rely on open-source software tools and high-performance computing. Our monolingual collection focuses on low- to medium-resourced languages and covers 75 languages and a total of ≈ 5.6 trillion word tokens de-duplicated on the document level. Our English-centric parallel corpus is derived from its monolingual counterpart and covers 18 language pairs and more than 96 million aligned sentence pairs with roughly 1.4 billion English tokens. The HPLT language resources are one of the largest open text corpora ever released, providing a great resource for language modeling and machine translation training. We publicly release the corpora, the software, and the tools used in this work.
Large, curated, web-crawled corpora play a vital role in training language models (LMs). They form the lion’s share of the training data in virtually all recent LMs, such as the well-known GPT, LLaMA and XLM-RoBERTa models. However, despite this importance, relatively little attention has been given to the quality of these corpora. In this paper, we compare four of the currently most relevant large, web-crawled corpora (CC100, MaCoCu, mC4 and OSCAR) across eleven lower-resourced European languages. Our approach is two-fold: first, we perform an intrinsic evaluation by performing a human evaluation of the quality of samples taken from different corpora; then, we assess the practical impact of the qualitative differences by training specific LMs on each of the corpora and evaluating their performance on downstream tasks. We find that there are clear differences in quality of the corpora, with MaCoCu and OSCAR obtaining the best results. However, during the extrinsic evaluation, we actually find that the CC100 corpus achieves the highest scores. We conclude that, in our experiments, the quality of the web-crawled corpora does not seem to play a significant role when training LMs.
Language identification is a crucial component in the automated production of language resources, particularly in multilingual and big data contexts. However, commonly used language identifiers struggle to differentiate between similar or closely-related languages. This paper introduces FastSpell, a language identifier that combines fastText (a pre-trained language identifier tool) and Hunspell (a spell checker) with the aim of having a refined second-opinion before deciding which language should be assigned to a text. We provide a description of the FastSpell algorithm along with an explanation on how to use and configure it. To that end, we motivate the need of such a tool and present a benchmark including some popular language identifiers evaluated during the development of FastSpell. We show how FastSpell is useful not only to improve identification of similar languages, but also to identify new ones ignored by other tools.
SmartBiC, an 18-month innovation project funded by the Spanish Government, aims at improving the full process of collecting, filtering and selecting in-domain parallel content to be used for machine translation and language model tuning purposes in industrial settings. Based on state-of-the-art technology in the free/open-source parallel web corpora harvester Bitextor, SmartBic develops a web-based application around it including novel components such as a language- and domain-focused crawler and a domain-specific corpora selector. SmartBic also addresses specific industrial use cases for individual components of the Bitextor pipeline, such as parallel data cleaning. Relevant improvements to the current Bitextor pipeline will be publicly released.
The High Performance Language Technologies (HPLT) project is a 3-year EU-funded project that started in September 2022. It aims to deliver free, sustainable, and reusable datasets, models, and workflows at scale using high-performance computing. We describe the first results of the project. The data release includes monolingual data in 75 languages at 5.6T tokens and parallel data in 18 language pairs at 96M pairs, derived from 1.8 petabytes of web crawls. Building upon automated and transparent pipelines, the first machine translation (MT) models as well as large language models (LLMs) have been trained and released. Multiple data processing tools and pipelines have also been made public.
We present the most relevant results of the project MaCoCu: Massive collection and curation of monolingual and bilingual data: focus on under-resourced languages in its second year. To date, parallel and monolingual corpora have been produced for seven low-resourced European languages by crawling large amounts of textual data from selected top-level domains of the Internet; both human and automatic evaluation show its usefulness. In addition, several large language models pretrained on MaCoCu data have been published, as well as the code used to collect and curate the data.
We describe the High Performance Language Technologies project (HPLT), a 3-year EU-funded project started in September 2022. HPLT will build a space combining petabytes of natural language data with large-scale model training. It will derive monolingual and bilingual datasets from the Internet Archive and CommonCrawl and build efficient and solid machine translation (MT) as well as large language models (LLMs). HPLT aims at providing free, sustainable and reusable datasets, models and workflows at scale using high-performance computing (HPC).
We present the EuroPat corpus of patent-specific parallel data for 6 official European languages paired with English: German, Spanish, French, Croatian, Norwegian, and Polish. The filtered parallel corpora range in size from 51 million sentences (Spanish-English) to 154k sentences (Croatian-English), with the unfiltered (raw) corpora being up to 2 times larger. Access to clean, high quality, parallel data in technical domains such as science, engineering, and medicine is needed for training neural machine translation systems for tasks like online dispute resolution and eProcurement. Our evaluation found that the addition of EuroPat data to a generic baseline improved the performance of machine translation systems on in-domain test data in German, Spanish, French, and Polish; and in translating patent data from Croatian to English. The corpus has been released under Creative Commons Zero, and is expected to be widely useful for training high-quality machine translation systems, and particularly for those targeting technical documents such as patents and contracts.
This paper describes the experiments carried out during the development of the latest version of Bicleaner, named Bicleaner AI, a tool that aims at detecting noisy sentences in parallel corpora. The tool, which now implements a new neural classifier, uses state-of-the-art techniques based on pre-trained transformer-based language models fine-tuned on a binary classification task. After that, parallel corpus filtering is performed, discarding the sentences that have lower probability of being mutual translations. Our experiments, based on the training of neural machine translation (NMT) with corpora filtered using Bicleaner AI for two different scenarios, show significant improvements in translation quality compared to the previous version of the tool which implemented a classifier based on Extremely Randomized Trees.
Quality assessment has been an ongoing activity of the series of ParaCrawl efforts to crawl massive amounts of parallel data from multilingual websites for 29 languages. The goal of ParaCrawl is to get parallel data that is good for machine translation. To prove so, both, automatic (extrinsic) and human (intrinsic and extrinsic) evaluation tasks have been included as part of the quality assessment activity of the project. We sum up the various methods followed to address these evaluation tasks for the web-crawled corpora produced and their results. We review their advantages and disadvantages for the final goal of the ParaCrawl project and the related ongoing project MaCoCu.
The MultitraiNMT Erasmus+ project has developed an open innovative syl-labus in machine translation, focusing on neural machine translation (NMT) and targeting both language learners and translators. The training materials include an open access coursebook with more than 250 activities and a pedagogical NMT interface called MutNMT that allows users to learn how neural machine translation works. These materials will allow students to develop the technical and ethical skills and competences required to become informed, critical users of machine translation in their own language learn-ing and translation practice. The pro-ject started in July 2019 and it will end in July 2022.
We introduce the project “MaCoCu: Massive collection and curation of monolingual and bilingual data: focus on under-resourced languages”, funded by the Connecting Europe Facility, which is aimed at building monolingual and parallel corpora for under-resourced European languages. The approach followed consists of crawling large amounts of textual data from carefully selected top-level domains of the Internet, and then applying a curation and enrichment pipeline. In addition to corpora, the project will release successive versions of the free/open-source web crawling and curation software used.
The MultiTraiNMT Erasmus+ project aims at developing an open innovative syllabus in neural machine translation (NMT) for language learners and translators as multilingual citizens. Machine translation is seen as a resource that can support citizens in their attempt to acquire and develop language skills if they are trained in an informed and critical way. Machine translation could thus help tackle the mismatch between the desired EU aim of having multilingual citizens who speak at least two foreign languages and the current situation in which citizens generally fall far short of this objective. The training materials consists of an open-access coursebook, an open-source NMT web application called MutNMT for training purposes, and corresponding activities.
This paper shows the utility of two open-source tools designed for parallel data cleaning: Bifixer and Bicleaner. Already used to clean highly noisy parallel content from crawled multilingual websites, we evaluate their performance in a different scenario: cleaning publicly available corpora commonly used to train machine translation systems. We choose four English–Portuguese corpora which we plan to use internally to compute paraphrases at a later stage. We clean the four corpora using both tools, which are described in detail, and analyse the effect of some of the cleaning steps on them. We then compare machine translation training times and quality before and after cleaning these corpora, showing a positive impact particularly for the noisiest ones.
We report on methods to create the largest publicly available parallel corpora by crawling the web, using open source software. We empirically compare alternative methods and publish benchmark data sets for sentence alignment and sentence pair filtering. We also describe the parallel corpora released and evaluate their quality and their usefulness to create machine translation systems.
This paper describes Prompsit Language Engineering’s submissions to the WMT 2018 parallel corpus filtering shared task. Our four submissions were based on an automatic classifier for identifying pairs of sentences that are mutual translations. A set of hand-crafted hard rules for discarding sentences with evident flaws were applied before the classifier. We explored different strategies for achieving a training corpus with diverse vocabulary and fluent sentences: language model scoring, an active-learning-inspired data selection algorithm and n-gram saturation. Our submissions were very competitive in comparison with other participants on the 100 million word training corpus.
This paper presents a novel approach for parallel data generation using machine translation and quality estimation. Our study focuses on pivot-based machine translation from English to Croatian through Slovene. We generate an English―Croatian version of the Europarl parallel corpus based on the English―Slovene Europarl corpus and the Apertium rule-based translation system for Slovene―Croatian. These experiments are to be considered as a first step towards the generation of reliable synthetic parallel data for under-resourced languages. We first collect small amounts of aligned parallel data for the Slovene―Croatian language pair in order to build a quality estimation system for sentence-level Translation Edit Rate (TER) estimation. We then infer TER scores on automatically translated Slovene to Croatian sentences and use the best translations to build an English―Croatian statistical MT system. We show significant improvement in terms of automatic metrics obtained on two test sets using our approach compared to a random selection of synthetic parallel data.
This paper describes Apertium: a free/open-source machine translation platform (engine, toolbox and data), its history, its philosophy of design, its technology, the community of developers, the research and business based on it, and its prospects and challenges, now that it is five years old.
By the time Machine Translation Summit X is held in September 2005, our group will have released an open-source machine translation toolbox as part of a large government-funded project involving four universities and three linguistic technology companies from Spain. The machine translation toolbox, which will most likely be released under a GPL-like license includes (a) the open-source engine itself, a modular shallow-transfer machine translation engine suitable for related languages and largely based upon that of systems we have already developed, such as interNOSTRUM for Spanish—Catalan and Traductor Universia for Spanish—Portuguese, (b) extensive documentation (including document type declarations) specifying the XML format of all linguistic (dictionaries, rules) and document format management files, (c) compilers converting these data into the high-speed (tens of thousands of words a second) format used by the engine, and (d) pilot linguistic data for Spanish—Catalan and Spanish—Galician and format management specifications for the HTML, RTF and plain text formats. After describing very briefly this toolbox, this paper aims at exploring possible consequences of the availability of this architecture, including the community-driven development of machine translation systems for languages lacking this kind of linguistic technology.