George Chrysostomou


2022

pdf bib
Explainable Natural Language Processing
George Chrysostomou
Computational Linguistics, Volume 48, Issue 4 - December 2022

pdf bib
An Empirical Study on Explanations in Out-of-Domain Settings
George Chrysostomou | Nikolaos Aletras
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent work in Natural Language Processing has focused on developing approaches that extract faithful explanations, either via identifying the most important tokens in the input (i.e. post-hoc explanations) or by designing inherently faithful models that first select the most important tokens and then use them to predict the correct label (i.e. select-then-predict models). Currently, these approaches are largely evaluated on in-domain settings. Yet, little is known about how post-hoc explanations and inherently faithful models perform in out-of-domain settings. In this paper, we conduct an extensive empirical study that examines: (1) the out-of-domain faithfulness of post-hoc explanations, generated by five feature attribution methods; and (2) the out-of-domain performance of two inherently faithful models over six datasets. Contrary to our expectations, results show that in many cases out-of-domain post-hoc explanation faithfulness measured by sufficiency and comprehensiveness is higher compared to in-domain. We find this misleading and suggest using a random baseline as a yardstick for evaluating post-hoc explanation faithfulness. Our findings also show that select-then predict models demonstrate comparable predictive performance in out-of-domain settings to full-text trained models.

pdf bib
On the Impact of Temporal Concept Drift on Model Explanations
Zhixue Zhao | George Chrysostomou | Kalina Bontcheva | Nikolaos Aletras
Findings of the Association for Computational Linguistics: EMNLP 2022

Explanation faithfulness of model predictions in natural language processing is typically evaluated on held-out data from the same temporal distribution as the training data (i.e. synchronous settings). While model performance often deteriorates due to temporal variation (i.e. temporal concept drift), it is currently unknown how explanation faithfulness is impacted when the time span of the target data is different from the data used to train the model (i.e. asynchronous settings). For this purpose, we examine the impact of temporal variation on model explanations extracted by eight feature attribution methods and three select-then-predict models across six text classification tasks. Our experiments show that (i) faithfulness is not consistent under temporal variations across feature attribution methods (e.g. it decreases or increases depending on the method), with an attention-based method demonstrating the most robust faithfulness scores across datasets; and (ii) select-then-predict models are mostly robust in asynchronous settings with only small degradation in predictive performance. Finally, feature attribution methods show conflicting behavior when used in FRESH (i.e. a select-and-predict model) and for measuring sufficiency/comprehensiveness (i.e. as post-hoc methods), suggesting that we need more robust metrics to evaluate post-hoc explanation faithfulness. Code will be made publicly available.

2021

pdf bib
Frustratingly Simple Pretraining Alternatives to Masked Language Modeling
Atsuki Yamaguchi | George Chrysostomou | Katerina Margatina | Nikolaos Aletras
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Masked language modeling (MLM), a self-supervised pretraining objective, is widely used in natural language processing for learning text representations. MLM trains a model to predict a random sample of input tokens that have been replaced by a [MASK] placeholder in a multi-class setting over the entire vocabulary. When pretraining, it is common to use alongside MLM other auxiliary objectives on the token or sequence level to improve downstream performance (e.g. next sentence prediction). However, no previous work so far has attempted in examining whether other simpler linguistically intuitive or not objectives can be used standalone as main pretraining objectives. In this paper, we explore five simple pretraining objectives based on token-level classification tasks as replacements of MLM. Empirical results on GLUE and SQUAD show that our proposed methods achieve comparable or better performance to MLM using a BERT-BASE architecture. We further validate our methods using smaller models, showing that pretraining a model with 41% of the BERT-BASE’s parameters, BERT-MEDIUM results in only a 1% drop in GLUE scores with our best objective.

pdf bib
Enjoy the Salience: Towards Better Transformer-based Faithful Explanations with Word Salience
George Chrysostomou | Nikolaos Aletras
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Pretrained transformer-based models such as BERT have demonstrated state-of-the-art predictive performance when adapted into a range of natural language processing tasks. An open problem is how to improve the faithfulness of explanations (rationales) for the predictions of these models. In this paper, we hypothesize that salient information extracted a priori from the training data can complement the task-specific information learned by the model during fine-tuning on a downstream task. In this way, we aim to help BERT not to forget assigning importance to informative input tokens when making predictions by proposing SaLoss; an auxiliary loss function for guiding the multi-head attention mechanism during training to be close to salient information extracted a priori using TextRank. Experiments for explanation faithfulness across five datasets, show that models trained with SaLoss consistently provide more faithful explanations across four different feature attribution methods compared to vanilla BERT. Using the rationales extracted from vanilla BERT and SaLoss models to train inherently faithful classifiers, we further show that the latter result in higher predictive performance in downstream tasks.

pdf bib
Improving the Faithfulness of Attention-based Explanations with Task-specific Information for Text Classification
George Chrysostomou | Nikolaos Aletras
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Neural network architectures in natural language processing often use attention mechanisms to produce probability distributions over input token representations. Attention has empirically been demonstrated to improve performance in various tasks, while its weights have been extensively used as explanations for model predictions. Recent studies (Jain and Wallace, 2019; Serrano and Smith, 2019; Wiegreffe and Pinter, 2019) have showed that it cannot generally be considered as a faithful explanation (Jacovi and Goldberg, 2020) across encoders and tasks. In this paper, we seek to improve the faithfulness of attention-based explanations for text classification. We achieve this by proposing a new family of Task-Scaling (TaSc) mechanisms that learn task-specific non-contextualised information to scale the original attention weights. Evaluation tests for explanation faithfulness, show that the three proposed variants of TaSc improve attention-based explanations across two attention mechanisms, five encoders and five text classification datasets without sacrificing predictive performance. Finally, we demonstrate that TaSc consistently provides more faithful attention-based explanations compared to three widely-used interpretability techniques.