This paper presents the system submissions of the John-Arthur team to the SemEval Task 4 “ValueEval: Identification of Human Values behind Arguments”. The best system of the team was ranked 3rd and the overall rank of the team was 2nd (the first team had the two best systems). John-Arthur team models the ValueEval problem as a multi-class, multi-label text classification problem. The solutions leverage recently proposed large language models that are fine-tuned on the provided datasets. To boost the achieved performance we employ different best practises whose impact on the model performance we evaluate here. The code ispublicly available at github and the model onHuggingface hub.
The paper describes the participation of the team “TwiSE” in the SemEval-2017 challenge. Specifically, I participated at Task 4 entitled “Sentiment Analysis in Twitter” for which I implemented systems for five-point tweet classification (Subtask C) and five-point tweet quantification (Subtask E) for English tweets. In the feature extraction steps the systems rely on the vector space model, morpho-syntactic analysis of the tweets and several sentiment lexicons. The classification step of Subtask C uses a Logistic Regression trained with the one-versus-rest approach. Another instance of Logistic Regression combined with the classify-and-count approach is trained for the quantification task of Subtask E. In the official leaderboard the system is ranked 5/15 in Subtask C and 2/12 in Subtask E.
This paper presents an LDA-based model that generates topically coherent segments within documents by jointly segmenting documents and assigning topics to their words. The coherence between topics is ensured through a copula, binding the topics associated to the words of a segment. In addition, this model relies on both document and segment specific topic distributions so as to capture fine grained differences in topic assignments. We show that the proposed model naturally encompasses other state-of-the-art LDA-based models designed for similar tasks. Furthermore, our experiments, conducted on six different publicly available datasets, show the effectiveness of our model in terms of perplexity, Normalized Pointwise Mutual Information, which captures the coherence between the generated topics, and the Micro F1 measure for text classification.
The exchangeability assumption in topic models like Latent Dirichlet Allocation (LDA) often results in inferring inconsistent topics for the words of text spans like noun-phrases, which are usually expected to be topically coherent. We propose copulaLDA, that extends LDA by integrating part of the text structure to the model and relaxes the conditional independence assumption between the word-specific latent topics given the per-document topic distributions. To this end, we assume that the words of text spans like noun-phrases are topically bound and we model this dependence with copulas. We demonstrate empirically the effectiveness of copulaLDA on both intrinsic and extrinsic evaluation tasks on several publicly available corpora.