Visual instruction tuning is crucial for enhancing the zero-shot generalization capability of Multi-modal Large Language Models (MLLMs). In this paper, we aim to investigate a fundamental question: “what makes for good visual instructions”. Through a comprehensive empirical study, we find that instructions focusing on complex visual reasoning tasks are particularly effective in improving the performance of MLLMs, with results correlating to instruction complexity. Based on this insight, we develop a systematic approach to automatically create high-quality complex visual reasoning instructions. Our approach employs a synthesize-complicate-reformulate paradigm, leveraging multiple stages to gradually increase the complexity of the instructions while guaranteeing quality. Based on this approach, we create the ComVint dataset with 32K examples, and fine-tune four MLLMs on it. Experimental results consistently demonstrate the enhanced performance of all compared MLLMs, such as a 27.86% and 27.60% improvement for LLaVA on MME-Perception and MME-Cognition, respectively. Our code and data are publicly available at the link: https://github.com/RUCAIBox/ComVint.
Large language models have seen widespread adoption in math problem-solving, yet for geometry problems, which often necessitate visual aids even for humans, the most advanced multi-modal models still struggle to effectively utilize image information. High-quality data is crucial for enhancing the geometric capabilities of multi-modal models, yet existing open-source datasets and related efforts are either too challenging for direct model learning or suffer from misalignment between text and images. To overcome this issue, we introduce a novel pipeline that leverages GPT-4 and GPT-4V to generate relatively basic geometry problems with aligned text and images, facilitating model learning. We have produced a dataset of 4.9K geometry problems and combined it with 19K open-source data to form our GeoGPT4V dataset. Experimental results demonstrate that the GeoGPT4V dataset significantly improves the geometry performance of various models on the MathVista and MathVision benchmarks. The code is available at https://anonymous.4open.science/r/GeoGPT4V-08B2.
Long-context capabilities are essential for large language models (LLMs) to tackle complex and long-input tasks. Despite numerous efforts made to optimize LLMs for long contexts, challenges persist in robustly processing long inputs. In this paper, we introduce GraphReader, a graph-based agent system designed to handle long texts by structuring them into a graph and employing an agent to explore this graph autonomously. Upon receiving a question, the agent first undertakes a step-by-step analysis and devises a rational plan. It then invokes a set of predefined functions to read node content and neighbors, facilitating a coarse-to-fine exploration of the graph. Throughout the exploration, the agent continuously records new insights and reflects on current circumstances to optimize the process until it has gathered sufficient information to generate an answer. Experimental results on the LV-Eval dataset reveal that GraphReader using a 4k context window, consistently outperforms GPT-4-128k across context lengths from 16k to 256k by a large margin. Additionally, our approach demonstrates superior performance on four challenging single-hop and multi-hop benchmarks.
Although pre-trained language models (PLMs) have shown impressive performance by text-only self-supervised training, they are found lack of visual semantics or commonsense. Existing solutions often rely on explicit images for visual knowledge augmentation (requiring time-consuming retrieval or generation), and they also conduct the augmentation for the whole input text, without considering whether it is actually needed in specific inputs or tasks. To address these issues, we propose a novel **V**isually-**A**ugmented fine-tuning approach that can be generally applied to various PLMs or NLP tasks, **W**ithout using any retrieved or generated **I**mages, namely **VAWI**. Experimental results show that our approach can consistently improve the performance of BERT, RoBERTa, BART, and T5 at different scales, and outperform several competitive baselines on ten tasks. Our codes and data are publicly available at
https://github.com/RUCAIBox/VAWI.