Harish Tayyar Madabushi

Also published as: Harish Tayyar Madabushi


2024

pdf bib
Every Time We Hire an LLM, the Reasoning Performance of the Linguists Goes Up
Harish Tayyar Madabushi
Proceedings of the Joint Workshop on Multiword Expressions and Universal Dependencies (MWE-UD) @ LREC-COLING 2024

pdf bib
Word Boundary Information Isn’t Useful for Encoder Language Models
Edward Gow-Smith | Dylan Phelps | Harish Tayyar Madabushi | Carolina Scarton | Aline Villavicencio
Proceedings of the 9th Workshop on Representation Learning for NLP (RepL4NLP-2024)

All existing transformer-based approaches to NLP using subword tokenisation algorithms encode whitespace (word boundary information) through the use of special space symbols (such as ## or _) forming part of tokens. These symbols have been shown to a) lead to reduced morphological validity of tokenisations, and b) give substantial vocabulary redundancy. As such, removing these symbols has been shown to have a beneficial effect on the processing of morphologically complex words for transformer encoders in the pretrain-finetune paradigm. In this work, we explore whether word boundary information is at all useful to such models. In particular, we train transformer encoders across four different training scales, and investigate several alternative approaches to including word boundary information, evaluating on two languages (English and Finnish) with a range of tasks across different domains and problem set-ups: sentence classification datasets, NER (for token-level classification), and two classification datasets involving complex words (Superbizarre and FLOTA). Overall, through an extensive experimental setup that includes the pre-training of 35 models, we find no substantial improvements from our alternative approaches, suggesting that modifying tokenisers to remove word boundary information isn’t leading to a loss of useful information.

pdf bib
A Construction Grammar Corpus of Varying Schematicity: A Dataset for the Evaluation of Abstractions in Language Models
Claire Bonial | Harish Tayyar Madabushi
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large Language Models (LLMs) have been developed without a theoretical framework, yet we posit that evaluating and improving LLMs will benefit from the development of theoretical frameworks that enable comparison of the structures of human language and the model of language built up by LLMs through the processing of text. In service of this goal, we develop the Construction Grammar Schematicity (“CoGS”) corpus of 10 distinct English constructions, where the constructions vary with respect to schematicity, or in other words the level to which constructional slots require specific, fixed lexical items, or can be filled with a variety of elements that fulfill a particular semantic role of the slot. Our corpus constructions are carefully curated to range from substantive, frozen constructions (e.g., Let-alone) to entirely schematic constructions (e.g., Resultative). The corpus was collected to allow us to probe LLMs for constructional information at varying levels of abstraction. We present our own probing experiments using this corpus, which clearly demonstrate that even the largest LLMs are limited to more substantive constructions and do not exhibit recognition of the similarity of purely schematic constructions. We publicly release our dataset, prompts, and associated model responses.

pdf bib
Code-Mixed Probes Show How Pre-Trained Models Generalise on Code-Switched Text
Frances Adriana Laureano De Leon | Harish Tayyar Madabushi | Mark Lee
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Code-switching is a prevalent linguistic phenomenon in which multilingual individuals seamlessly alternate between languages. Despite its widespread use online and recent research trends in this area, research in code-switching presents unique challenges, primarily stemming from the scarcity of labelled data and available resources. In this study we investigate how pre-trained Language Models handle code-switched text in three dimensions: a) the ability of PLMs to detect code-switched text, b) variations in the structural information that PLMs utilise to capture code-switched text, and c) the consistency of semantic information representation in code-switched text. To conduct a systematic and controlled evaluation of the language models in question, we create a novel dataset of well-formed naturalistic code-switched text along with parallel translations into the source languages. Our findings reveal that pre-trained language models are effective in generalising to code-switched text, shedding light on abilities of these models to generalise representations to CS corpora. We release all our code and data, including the novel corpus, at https://github.com/francesita/code-mixed-probes.

pdf bib
Pre-Trained Language Models Represent Some Geographic Populations Better than Others
Jonathan Dunn | Benjamin Adams | Harish Tayyar Madabushi
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

This paper measures the skew in how well two families of LLMs represent diverse geographic populations. A spatial probing task is used with geo-referenced corpora to measure the degree to which pre-trained language models from the OPT and BLOOM series represent diverse populations around the world. Results show that these models perform much better for some populations than others. In particular, populations across the US and the UK are represented quite well while those in South and Southeast Asia are poorly represented. Analysis shows that both families of models largely share the same skew across populations. At the same time, this skew cannot be fully explained by sociolinguistic factors, economic factors, or geographic factors. The basic conclusion from this analysis is that pre-trained models do not equally represent the world’s population: there is a strong skew towards specific geographic populations. This finding challenges the idea that a single model can be used for all populations.

pdf bib
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
Atul Kr. Ojha | A. Seza Doğruöz | Harish Tayyar Madabushi | Giovanni Da San Martino | Sara Rosenthal | Aiala Rosá
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

pdf bib
Are Emergent Abilities in Large Language Models just In-Context Learning?
Sheng Lu | Irina Bigoulaeva | Rachneet Sachdeva | Harish Tayyar Madabushi | Iryna Gurevych
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models, comprising billions of parameters and pre-trained on extensive web-scale corpora, have been claimed to acquire certain capabilities without having been specifically trained on them. These capabilities, referred to as “emergent abilities,” have been a driving force in discussions regarding the potentials and risks of language models. A key challenge in evaluating emergent abilities is that they are confounded by model competencies that arise through alternative prompting techniques, including in-context learning, which is the ability of models to complete a task based on a few examples. We present a novel theory that explains emergent abilities, taking into account their potential confounding factors, and rigorously substantiate this theory through over 1000 experiments. Our findings suggest that purported emergent abilities are not truly emergent, but result from a combination of in-context learning, model memory, and linguistic knowledge. Our work is a foundational step in explaining language model performance, providing a template for their efficient use and clarifying the paradox of their ability to excel in some instances while faltering in others. Thus, we demonstrate that their capabilities should not be overestimated.

pdf bib
Adjudicating LLMs as PropBank Adjudicators
Julia Bonn | Harish Tayyar Madabushi | Jena D. Hwang | Claire Bonial
Proceedings of the Fifth International Workshop on Designing Meaning Representations @ LREC-COLING 2024

We evaluate the ability of large language models (LLMs) to provide PropBank semantic role label annotations across different realizations of the same verbs in transitive, intransitive, and middle voice constructions. In order to assess the meta-linguistic capabilities of LLMs as well as their ability to glean such capabilities through in-context learning, we evaluate the models in a zero-shot setting, in a setting where it is given three examples of another verb used in transitive, intransitive, and middle voice constructions, and finally in a setting where it is given the examples as well as the correct sense and roleset information. We find that zero-shot knowledge of PropBank annotation is almost nonexistent. The largest model evaluated, GPT-4, achieves the best performance in the setting where it is given both examples and the correct roleset in the prompt, demonstrating that larger models can ascertain some meta-linguistic capabilities through in-context learning. However, even in this setting, which is simpler than the task of a human in PropBank annotation, the model achieves only 48% accuracy in marking numbered arguments correctly. To ensure transparency and reproducibility, we publicly release our dataset and model responses.

2023

pdf bib
Proceedings of the First International Workshop on Construction Grammars and NLP (CxGs+NLP, GURT/SyntaxFest 2023)
Claire Bonial | Harish Tayyar Madabushi
Proceedings of the First International Workshop on Construction Grammars and NLP (CxGs+NLP, GURT/SyntaxFest 2023)

pdf bib
Uniform Complexity for Text Generation
Joseph Marvin Imperial | Harish Tayyar Madabushi
Findings of the Association for Computational Linguistics: EMNLP 2023

Large language models (LLMs) have shown promising results in a wide array of generative NLP tasks, such as summarization and machine translation. In the context of narrative generation, however, existing models still do not capture factors that contribute to producing consistent text. For instance, it is logical that a piece of text or a story should be uniformly readable throughout and that this form of complexity should be controllable. As such, if the complexity of an input text prompt is rated first-grade reading level in the Flesch Reading Ease test, then the generated text continuing the plot should also be within this range of complexity. With this in mind, we introduce Uniform Complexity for Text Generation (UCTG), a new benchmark test which raises the challenge of making generative models observe uniform linguistic properties with respect to prompts. We experiment with over 150+ linguistically and cognitively motivated features for evaluating text complexity in humans and generative models. From our results, we find that models such as GPT-2 struggle to preserve the complexity of input prompts used in its generations, even if finetuned with professionally written texts.

pdf bib
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
Atul Kr. Ojha | A. Seza Doğruöz | Giovanni Da San Martino | Harish Tayyar Madabushi | Ritesh Kumar | Elisa Sartori
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

pdf bib
Flesch or Fumble? Evaluating Readability Standard Alignment of Instruction-Tuned Language Models
Joseph Marvin Imperial | Harish Tayyar Madabushi
Proceedings of the Third Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)

Readability metrics and standards such as Flesch Kincaid Grade Level (FKGL) and the Common European Framework of Reference for Languages (CEFR) exist to guide teachers and educators to properly assess the complexity of educational materials before administering them for classroom use. In this study, we select a diverse set of open and closed-source instruction-tuned language models and investigate their performances in writing story completions and simplifying narratives—tasks that teachers perform—using standard-guided prompts controlling text readability. Our extensive findings provide empirical proof of how globally recognized models like ChatGPT may be considered less effective and may require more refined prompts for these generative tasks compared to other open-sourced models such as BLOOMZ and FlanT5—which have shown promising results.

2022

pdf bib
SemEval-2022 Task 2: Multilingual Idiomaticity Detection and Sentence Embedding
Harish Tayyar Madabushi | Edward Gow-Smith | Marcos Garcia | Carolina Scarton | Marco Idiart | Aline Villavicencio
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This paper presents the shared task on Multilingual Idiomaticity Detection and Sentence Embedding, which consists of two subtasks: (a) a binary classification task aimed at identifying whether a sentence contains an idiomatic expression, and (b) a task based on semantic text similarity which requires the model to adequately represent potentially idiomatic expressions in context. Each subtask includes different settings regarding the amount of training data. Besides the task description, this paper introduces the datasets in English, Portuguese, and Galician and their annotation procedure, the evaluation metrics, and a summary of the participant systems and their results. The task had close to 100 registered participants organised into twenty five teams making over 650 and 150 submissions in the practice and evaluation phases respectively.

pdf bib
Improving Tokenisation by Alternative Treatment of Spaces
Edward Gow-Smith | Harish Tayyar Madabushi | Carolina Scarton | Aline Villavicencio
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

pdf bib
Abstraction not Memory: BERT and the English Article System
Harish Tayyar Madabushi | Dagmar Divjak | Petar Milin
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Article prediction is a task that has long defied accurate linguistic description. As such, this task is ideally suited to evaluate models on their ability to emulate native-speaker intuition. To this end, we compare the performance of native English speakers and pre-trained models on the task of article prediction set up as a three way choice (a/an, the, zero). Our experiments with BERT show that BERT outperforms humans on this task across all articles. In particular, BERT is far superior to humans at detecting the zero article, possibly because we insert them using rules that the deep neural model can easily pick up. More interestingly, we find that BERT tends to agree more with annotators than with the corpus when inter-annotator agreement is high but switches to agreeing more with the corpus as inter-annotator agreement drops. We contend that this alignment with annotators, despite being trained on the corpus, suggests that BERT is not memorising article use, but captures a high level generalisation of article use akin to human intuition.

pdf bib
Effective Cross-Task Transfer Learning for Explainable Natural Language Inference with T5
Irina Bigoulaeva | Rachneet Singh Sachdeva | Harish Tayyar Madabushi | Aline Villavicencio | Iryna Gurevych
Proceedings of the 3rd Workshop on Figurative Language Processing (FLP)

We compare sequential fine-tuning with a model for multi-task learning in the context where we are interested in boosting performance on two of the tasks, one of which depends on the other. We test these models on the FigLang2022 shared task which requires participants to predict language inference labels on figurative language along with corresponding textual explanations of the inference predictions. Our results show that while sequential multi-task learning can be tuned to be good at the first of two target tasks, it performs less well on the second and additionally struggles with overfitting. Our findings show that simple sequential fine-tuning of text-to-text models is an extraordinarily powerful method of achieving cross-task knowledge transfer while simultaneously predicting multiple interdependent targets. So much so, that our best model achieved the (tied) highest score on the task.

pdf bib
Sample Efficient Approaches for Idiomaticity Detection
Dylan Phelps | Xuan-Rui Fan | Edward Gow-Smith | Harish Tayyar Madabushi | Carolina Scarton | Aline Villavicencio
Proceedings of the 18th Workshop on Multiword Expressions @LREC2022

Deep neural models, in particular Transformer-based pre-trained language models, require a significant amount of data to train. This need for data tends to lead to problems when dealing with idiomatic multiword expressions (MWEs), which are inherently less frequent in natural text. As such, this work explores sample efficient methods of idiomaticity detection. In particular we study the impact of Pattern Exploit Training (PET), a few-shot method of classification, and BERTRAM, an efficient method of creating contextual embeddings, on the task of idiomaticity detection. In addition, to further explore generalisability, we focus on the identification of MWEs not present in the training data. Our experiments show that while these methods improve performance on English, they are much less effective on Portuguese and Galician, leading to an overall performance about on par with vanilla mBERT. Regardless, we believe sample efficient methods for both identifying and representing potentially idiomatic MWEs are very encouraging and hold significant potential for future exploration.

2021

pdf bib
Learned Construction Grammars Converge Across Registers Given Increased Exposure
Jonathan Dunn | Harish Tayyar Madabushi
Proceedings of the 25th Conference on Computational Natural Language Learning

This paper measures the impact of increased exposure on whether learned construction grammars converge onto shared representations when trained on data from different registers. Register influences the frequency of constructions, with some structures common in formal but not informal usage. We expect that a grammar induction algorithm exposed to different registers will acquire different constructions. To what degree does increased exposure lead to the convergence of register-specific grammars? The experiments in this paper simulate language learning in 12 languages (half Germanic and half Romance) with corpora representing three registers (Twitter, Wikipedia, Web). These simulations are repeated with increasing amounts of exposure, from 100k to 2 million words, to measure the impact of exposure on the convergence of grammars. The results show that increased exposure does lead to converging grammars across all languages. In addition, a shared core of register-universal constructions remains constant across increasing amounts of exposure.

pdf bib
UoB at ProfNER 2021: Data Augmentation for Classification Using Machine Translation
Frances Adriana Laureano De Leon | Harish Tayyar Madabushi | Mark Lee
Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task

This paper describes the participation of the UoB-NLP team in the ProfNER-ST shared subtask 7a. The task was aimed at detecting the mention of professions in social media text. Our team experimented with two methods of improving the performance of pre-trained models: Specifically, we experimented with data augmentation through translation and the merging of multiple language inputs to meet the objective of the task. While the best performing model on the test data consisted of mBERT fine-tuned on augmented data using back-translation, the improvement is minor possibly because multi-lingual pre-trained models such as mBERT already have access to the kind of information provided through back-translation and bilingual data.

pdf bib
UoB at SemEval-2021 Task 5: Extending Pre-Trained Language Models to Include Task and Domain-Specific Information for Toxic Span Prediction
Erik Yan | Harish Tayyar Madabushi
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

Toxicity is pervasive in social media and poses a major threat to the health of online communities. The recent introduction of pre-trained language models, which have achieved state-of-the-art results in many NLP tasks, has transformed the way in which we approach natural language processing. However, the inherent nature of pre-training means that they are unlikely to capture task-specific statistical information or learn domain-specific knowledge. Additionally, most implementations of these models typically do not employ conditional random fields, a method for simultaneous token classification. We show that these modifications can improve model performance on the Toxic Spans Detection task at SemEval-2021 to achieve a score within 4 percentage points of the top performing team.

pdf bib
UoB_UK at SemEval 2021 Task 2: Zero-Shot and Few-Shot Learning for Multi-lingual and Cross-lingual Word Sense Disambiguation.
Wei Li | Harish Tayyar Madabushi | Mark Lee
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper describes our submission to SemEval 2021 Task 2. We compare XLM-RoBERTa Base and Large in the few-shot and zero-shot settings and additionally test the effectiveness of using a k-nearest neighbors classifier in the few-shot setting instead of the more traditional multi-layered perceptron. Our experiments on both the multi-lingual and cross-lingual data show that XLM-RoBERTa Large, unlike the Base version, seems to be able to more effectively transfer learning in a few-shot setting and that the k-nearest neighbors classifier is indeed a more powerful classifier than a multi-layered perceptron when used in few-shot learning.

pdf bib
CogNLP-Sheffield at CMCL 2021 Shared Task: Blending Cognitively Inspired Features with Transformer-based Language Models for Predicting Eye Tracking Patterns
Peter Vickers | Rosa Wainwright | Harish Tayyar Madabushi | Aline Villavicencio
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics

The CogNLP-Sheffield submissions to the CMCL 2021 Shared Task examine the value of a variety of cognitively and linguistically inspired features for predicting eye tracking patterns, as both standalone model inputs and as supplements to contextual word embeddings (XLNet). Surprisingly, the smaller pre-trained model (XLNet-base) outperforms the larger (XLNet-large), and despite evidence that multi-word expressions (MWEs) provide cognitive processing advantages, MWE features provide little benefit to either model.

pdf bib
AStitchInLanguageModels: Dataset and Methods for the Exploration of Idiomaticity in Pre-Trained Language Models
Harish Tayyar Madabushi | Edward Gow-Smith | Carolina Scarton | Aline Villavicencio
Findings of the Association for Computational Linguistics: EMNLP 2021

Despite their success in a variety of NLP tasks, pre-trained language models, due to their heavy reliance on compositionality, fail in effectively capturing the meanings of multiword expressions (MWEs), especially idioms. Therefore, datasets and methods to improve the representation of MWEs are urgently needed. Existing datasets are limited to providing the degree of idiomaticity of expressions along with the literal and, where applicable, (a single) non-literal interpretation of MWEs. This work presents a novel dataset of naturally occurring sentences containing MWEs manually classified into a fine-grained set of meanings, spanning both English and Portuguese. We use this dataset in two tasks designed to test i) a language model’s ability to detect idiom usage, and ii) the effectiveness of a language model in generating representations of sentences containing idioms. Our experiments demonstrate that, on the task of detecting idiomatic usage, these models perform reasonably well in the one-shot and few-shot scenarios, but that there is significant scope for improvement in the zero-shot scenario. On the task of representing idiomaticity, we find that pre-training is not always effective, while fine-tuning could provide a sample efficient method of learning representations of sentences containing MWEs.

2020

pdf bib
Incorporating Count-Based Features into Pre-Trained Models for Improved Stance Detection
Anushka Prakash | Harish Tayyar Madabushi
Proceedings of the 3rd NLP4IF Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda

The explosive growth and popularity of Social Media has revolutionised the way we communicate and collaborate. Unfortunately, this same ease of accessing and sharing information has led to an explosion of misinformation and propaganda. Given that stance detection can significantly aid in veracity prediction, this work focuses on boosting automated stance detection, a task on which pre-trained models have been extremely successful on, as on several other tasks. This work shows that the task of stance detection can benefit from feature based information, especially on certain under performing classes, however, integrating such features into pre-trained models using ensembling is challenging. We propose a novel architecture for integrating features with pre-trained models that address these challenges and test our method on the RumourEval 2019 dataset. This method achieves state-of-the-art results with an F1-score of 63.94 on the test set.

pdf bib
Augmenting Neural Metaphor Detection with Concreteness
Ghadi Alnafesah | Harish Tayyar Madabushi | Mark Lee
Proceedings of the Second Workshop on Figurative Language Processing

The idea that a shift in concreteness within a sentence indicates the presence of a metaphor has been around for a while. However, recent methods of detecting metaphor that have relied on deep neural models have ignored concreteness and related psycholinguistic information. We hypothesis that this information is not available to these models and that their addition will boost the performance of these models in detecting metaphor. We test this hypothesis on the Metaphor Detection Shared Task 2020 and find that the addition of concreteness information does in fact boost deep neural models. We also run tests on data from a previous shared task and show similar results.

pdf bib
CxGBERT: BERT meets Construction Grammar
Harish Tayyar Madabushi | Laurence Romain | Dagmar Divjak | Petar Milin
Proceedings of the 28th International Conference on Computational Linguistics

While lexico-semantic elements no doubt capture a large amount of linguistic information, it has been argued that they do not capture all information contained in text. This assumption is central to constructionist approaches to language which argue that language consists of constructions, learned pairings of a form and a function or meaning that are either frequent or have a meaning that cannot be predicted from its component parts. BERT’s training objectives give it access to a tremendous amount of lexico-semantic information, and while BERTology has shown that BERT captures certain important linguistic dimensions, there have been no studies exploring the extent to which BERT might have access to constructional information. In this work we design several probes and conduct extensive experiments to answer this question. Our results allow us to conclude that BERT does indeed have access to a significant amount of information, much of which linguists typically call constructional information. The impact of this observation is potentially far-reaching as it provides insights into what deep learning methods learn from text, while also showing that information contained in constructions is redundantly encoded in lexico-semantics.

pdf bib
CXP949 at WNUT-2020 Task 2: Extracting Informative COVID-19 Tweets - RoBERTa Ensembles and The Continued Relevance of Handcrafted Features
Calum Perrio | Harish Tayyar Madabushi
Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)

This paper presents our submission to Task 2 of the Workshop on Noisy User-generated Text. We explore improving the performance of a pre-trained transformer-based language model fine-tuned for text classification through an ensemble implementation that makes use of corpus level information and a handcrafted feature. We test the effectiveness of including the aforementioned features in accommodating the challenges of a noisy data set centred on a specific subject outside the remit of the pre-training data. We show that inclusion of additional features can improve classification results and achieve a score within 2 points of the top performing team.

pdf bib
Multi-class Hierarchical Question Classification for Multiple Choice Science Exams
Dongfang Xu | Peter Jansen | Jaycie Martin | Zhengnan Xie | Vikas Yadav | Harish Tayyar Madabushi | Oyvind Tafjord | Peter Clark
Proceedings of the Twelfth Language Resources and Evaluation Conference

Prior work has demonstrated that question classification (QC), recognizing the problem domain of a question, can help answer it more accurately. However, developing strong QC algorithms has been hindered by the limited size and complexity of annotated data available. To address this, we present the largest challenge dataset for QC, containing 7,787 science exam questions paired with detailed classification labels from a fine-grained hierarchical taxonomy of 406 problem domains. We then show that a BERT-based model trained on this dataset achieves a large (+0.12 MAP) gain compared with previous methods, while also achieving state-of-the-art performance on benchmark open-domain and biomedical QC datasets. Finally, we show that using this model’s predictions of question topic significantly improves the accuracy of a question answering system by +1.7% P@1, with substantial future gains possible as QC performance improves.

pdf bib
UoB at SemEval-2020 Task 1: Automatic Identification of Novel Word Senses
Eleri Sarsfield | Harish Tayyar Madabushi
Proceedings of the Fourteenth Workshop on Semantic Evaluation

Much as the social landscape in which languages are spoken shifts, language too evolves to suit the needs of its users. Lexical semantic change analysis is a burgeoning field of semantic analysis which aims to trace changes in the meanings of words over time. This paper presents an approach to lexical semantic change detection based on Bayesian word sense induction suitable for novel word sense identification. This approach is used for a submission to SemEval-2020 Task 1, which shows the approach to be capable of the SemEval task. The same approach is also applied to a corpus gleaned from 15 years of Twitter data, the results of which are then used to identify words which may be instances of slang.

pdf bib
CS-Embed at SemEval-2020 Task 9: The Effectiveness of Code-switched Word Embeddings for Sentiment Analysis
Frances Adriana Laureano De Leon | Florimond Guéniat | Harish Tayyar Madabushi
Proceedings of the Fourteenth Workshop on Semantic Evaluation

The growing popularity and applications of sentiment analysis of social media posts has naturally led to sentiment analysis of posts written in multiple languages, a practice known as code-switching. While recent research into code-switched posts has focused on the use of multilingual word embeddings, these embeddings were not trained on code-switched data. In this work, we present word-embeddings trained on code-switched tweets, specifically those that make use of Spanish and English, known as Spanglish. We explore the embedding space to discover how they capture the meanings of words in both languages. We test the effectiveness of these embeddings by participating in SemEval 2020 Task 9: Sentiment Analysis on Code-Mixed Social Media Text. We utilised them to train a sentiment classifier that achieves an F-1 score of 0.722. This is higher than the baseline for the competition of 0.656, with our team (codalab username francesita) ranking 14 out of 29 participating teams, beating the baseline.

pdf bib
UoB at SemEval-2020 Task 12: Boosting BERT with Corpus Level Information
Wah Meng Lim | Harish Tayyar Madabushi
Proceedings of the Fourteenth Workshop on Semantic Evaluation

Pre-trained language model word representation, such as BERT, have been extremely successful in several Natural Language Processing tasks significantly improving on the state-of-the-art. This can largely be attributed to their ability to better capture semantic information contained within a sentence. Several tasks, however, can benefit from information available at a corpus level, such as Term Frequency-Inverse Document Frequency (TF-IDF). In this work we test the effectiveness of integrating this information with BERT on the task of identifying abuse on social media and show that integrating this information with BERT does indeed significantly improve performance. We participate in Sub-Task A (abuse detection) wherein we achieve a score within two points of the top performing team and in Sub-Task B (target detection) wherein we are ranked 4 of the 44 participating teams.

2019

pdf bib
Cost-Sensitive BERT for Generalisable Sentence Classification on Imbalanced Data
Harish Tayyar Madabushi | Elena Kochkina | Michael Castelle
Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda

The automatic identification of propaganda has gained significance in recent years due to technological and social changes in the way news is generated and consumed. That this task can be addressed effectively using BERT, a powerful new architecture which can be fine-tuned for text classification tasks, is not surprising. However, propaganda detection, like other tasks that deal with news documents and other forms of decontextualized social communication (e.g. sentiment analysis), inherently deals with data whose categories are simultaneously imbalanced and dissimilar. We show that BERT, while capable of handling imbalanced classes with no additional data augmentation, does not generalise well when the training and test data are sufficiently dissimilar (as is often the case with news sources, whose topics evolve over time). We show how to address this problem by providing a statistical measure of similarity between datasets and a method of incorporating cost-weighting into BERT when the training and test sets are dissimilar. We test these methods on the Propaganda Techniques Corpus (PTC) and achieve the second highest score on sentence-level propaganda classification.

2018

pdf bib
Integrating Question Classification and Deep Learning for improved Answer Selection
Harish Tayyar Madabushi | Mark Lee | John Barnden
Proceedings of the 27th International Conference on Computational Linguistics

We present a system for Answer Selection that integrates fine-grained Question Classification with a Deep Learning model designed for Answer Selection. We detail the necessary changes to the Question Classification taxonomy and system, the creation of a new Entity Identification system and methods of highlighting entities to achieve this objective. Our experiments show that Question Classes are a strong signal to Deep Learning models for Answer Selection, and enable us to outperform the current state of the art in all variations of our experiments except one. In the best configuration, our MRR and MAP scores outperform the current state of the art by between 3 and 5 points on both versions of the TREC Answer Selection test set, a standard dataset for this task.

2016

pdf bib
High Accuracy Rule-based Question Classification using Question Syntax and Semantics
Harish Tayyar Madabushi | Mark Lee
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

We present in this paper a purely rule-based system for Question Classification which we divide into two parts: The first is the extraction of relevant words from a question by use of its structure, and the second is the classification of questions based on rules that associate these words to Concepts. We achieve an accuracy of 97.2%, close to a 6 point improvement over the previous State of the Art of 91.6%. Additionally, we believe that machine learning algorithms can be applied on top of this method to further improve accuracy.

pdf bib
UoB-UK at SemEval-2016 Task 1: A Flexible and Extendable System for Semantic Text Similarity using Types, Surprise and Phrase Linking
Harish Tayyar Madabushi | Mark Buhagiar | Mark Lee
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)