Large language models are limited by challenges in factuality and hallucinations to be directly employed off-the-shelf for judging the veracity of news articles, where factual accuracy is paramount. In this work, we propose DELL that identifies three key stages in misinformation detection where LLMs could be incorporated as part of the pipeline: 1) LLMs could generate news reactions to represent diverse perspectives and simulate user-news interaction networks; 2) LLMs could generate explanations for proxy tasks (e.g., sentiment, stance) to enrich the contexts of news articles and produce experts specializing in various aspects of news understanding; 3) LLMs could merge task-specific experts and provide an overall prediction by incorporating the predictions and confidence scores of varying experts. Extensive experiments on seven datasets with three LLMs demonstrate that DELL outperforms state-of-the-art baselines by up to 16.8% in macro f1-score. Further analysis reveals that the generated reactions and explanations are greatly helpful in misinformation detection, while our proposed LLM-guided expert merging helps produce better-calibrated predictions.
Online movie review platforms are providing crowdsourced feedback for the film industry and the general public, while spoiler reviews greatly compromise user experience. Although preliminary research efforts were made to automatically identify spoilers, they merely focus on the review content itself, while robust spoiler detection requires putting the review into the context of facts and knowledge regarding movies, user behavior on film review platforms, and more. In light of these challenges, we first curate a large-scale network-based spoiler detection dataset LCS and a comprehensive and up-to-date movie knowledge base UKM. We then propose MVSD, a novel spoiler detection model that takes into account the external knowledge about movies and user activities on movie review platforms. Specifically, MVSD constructs three interconnecting heterogeneous information networks to model diverse data sources and their multi-view attributes, while we design and employ a novel heterogeneous graph neural network architecture for spoiler detection as node-level classification. Extensive experiments demonstrate that MVSD advances the state-of-the-art on two spoiler detection datasets, while the introduction of external knowledge and user interactions help ground robust spoiler detection.
Knowledge Graph (KG) reasoning aims at finding reasoning paths for relations, in order to solve the problem of incompleteness in KG. Many previous path-based methods like PRA and DeepPath suffer from lacking memory components, or stuck in training. Therefore, their performances always rely on well-pretraining. In this paper, we present a deep reinforcement learning based model named by AttnPath, which incorporates LSTM and Graph Attention Mechanism as the memory components. We define two metrics, Mean Selection Rate (MSR) and Mean Replacement Rate (MRR), to quantitatively measure how difficult it is to learn the query relations, and take advantages of them to fine-tune the model under the framework of reinforcement learning. Meanwhile, a novel mechanism of reinforcement learning is proposed by forcing an agent to walk forward every step to avoid the agent stalling at the same entity node constantly. Based on this operation, the proposed model not only can get rid of the pretraining process, but also achieves state-of-the-art performance comparing with the other models. We test our model on FB15K-237 and NELL-995 datasets with different tasks. Extensive experiments show that our model is effective and competitive with many current state-of-the-art methods, and also performs well in practice.