Hongxia Yang


2024

pdf bib
InfiMM: Advancing Multimodal Understanding with an Open-Sourced Visual Language Model
Haogeng Liu | Quanzeng You | Yiqi Wang | Xiaotian Han | Bohan Zhai | Yongfei Liu | Wentao Chen | Yiren Jian | Yunzhe Tao | Jianbo Yuan | Ran He | Hongxia Yang
Findings of the Association for Computational Linguistics: ACL 2024

In this work, we present InfiMM, an advanced Multimodal Large Language Model that adapts to intricate vision-language tasks. InfiMM, inspired by the Flamingo architecture, distinguishes itself through the utilization of large-scale training data, comprehensive training strategies, and diverse large language models. This approach ensures the preservation of Flamingo’s foundational strengths while simultaneously introducing augmented capabilities. Empirical evaluations across a variety of benchmarks underscore InfiMM’s remarkable capability in multimodal understanding. The code can be found at: https://anonymous.4open.science/r/infimm-zephyr-F60C/.

pdf bib
LoraRetriever: Input-Aware LoRA Retrieval and Composition for Mixed Tasks in the Wild
Ziyu Zhao | Leilei Gan | Guoyin Wang | Wangchunshu Zhou | Hongxia Yang | Kun Kuang | Fei Wu
Findings of the Association for Computational Linguistics: ACL 2024

Low-Rank Adaptation (LoRA) provides an effective yet efficient solution for fine-tuning large language models (LLMs). The modular and plug-and-play nature of LoRA enables the integration of diverse domain-specific LoRAs to enhance the capabilities of LLMs. Previous research on exploiting multiple LoRAs either focuses on specific isolated downstream tasks or fixes the selection of LoRAs during training. However, in real-world scenarios, LLMs receive diverse prompts covering different tasks, and the pool of candidate LoRAs is often dynamically updated. To bridge this gap, we propose LoraRetriever, a retrieve-then-compose framework that adaptively retrieves and composes multiple LoRAs according to the input prompts. LoraRetriever contains three main components: firstly, identifying and retrieving LoRAs relevant to the given input; secondly, formulating strategies for effectively integrating the retrieved LoRAs; and thirdly, developing efficient batch inference to accommodate heterogeneous requests. Experimental results indicate that LoraRetriever consistently outperforms the baselines, highlighting its practical effectiveness and versatility. Our code is available at https://github.com/StyxXuan/LoraRetriever.

pdf bib
Expedited Training of Visual Conditioned Language Generation via Redundancy Reduction
Yiren Jian | Tingkai Liu | Yunzhe Tao | Chunhui Zhang | Soroush Vosoughi | Hongxia Yang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We introduce EVLGen, a streamlined framework designed for the pre-training of visually conditioned language generation models with high computational demands, utilizing frozen pre-trained large language models (LLMs). The conventional approach in vision-language pre-training (VLP) typically involves a two-stage optimization process: an initial resource-intensive phase dedicated to general-purpose vision-language representation learning, focused on extracting and consolidating relevant visual features. This is followed by a subsequent phase that emphasizes end-to-end alignment between visual and linguistic modalities. Our novel one-stage, single-loss framework bypasses the computationally demanding first training stage by gradually merging similar visual tokens during training, while avoiding model collapse caused by single-stage training of BLIP-2 type models. The gradual merging process effectively condenses visual information while preserving semantic richness, resulting in rapid convergence without compromising performance. Our experimental findings demonstrate that our approach accelerates the training of vision-language models by a factor of 5 without a noticeable impact on overall performance. Furthermore, we illustrate that our models significantly narrow the performance gap to current vision-language models using only 1/10 of the data. Finally, we showcase how our image-text models can seamlessly adapt to video-conditioned language generation tasks through novel soft attentive temporal token contextualizing modules. Code: https://github.com/yiren-jian/EVLGen

pdf bib
An Expert is Worth One Token: Synergizing Multiple Expert LLMs as Generalist via Expert Token Routing
Ziwei Chai | Guoyin Wang | Jing Su | Tianjie Zhang | Xuanwen Huang | Xuwu Wang | Jingjing Xu | Jianbo Yuan | Hongxia Yang | Fei Wu | Yang Yang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present Expert-Token-Routing, a unified generalist framework that facilitates seamless integration of multiple expert LLMs. Our framework represents expert LLMs as special expert tokens within the vocabulary of a meta LLM. The meta LLM can route to an expert LLM like generating new tokens. Expert-Token-Routing not only supports learning the implicit expertise of expert LLMs from existing instruction dataset but also allows for dynamic extension of new expert LLMs in a plug-and-play manner. It also conceals the detailed collaboration process from the user’s perspective, facilitating interaction as though it were a singular LLM. Our framework outperforms various existing multi-LLM collaboration paradigms across benchmarks that incorporate six diverse expert domains, demonstrating effectiveness and robustness in building generalist LLM system via synergizing multiple expert LLMs.

pdf bib
DeVAn: Dense Video Annotation for Video-Language Models
Tingkai Liu | Yunzhe Tao | Haogeng Liu | Qihang Fang | Ding Zhou | Huaibo Huang | Ran He | Hongxia Yang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present a novel human annotated dataset for evaluating the ability for visual-language models to generate both short and long descriptions for real-world video clips, termed DeVAn (Dense Video Annotation). The dataset contains 8.5K YouTube video clips of 20-60 seconds in duration and covers a wide range of topics and interests. Each video clip is independently annotated by 5 human annotators, producing both captions (1 sentence) and summaries (3-10 sentences). Given any video selected from the dataset and its corresponding ASR information, we evaluate visual-language models on either caption or summary generation that is grounded in both the visual and auditory content of the video. Additionally, models are also evaluated on caption- and summary-based retrieval tasks, where the summary-based retrieval task requires the identification of a target video given excerpts of a given summary. Given the novel nature of the paragraph-length video summarization task, we compared different existing evaluation metrics and their alignment with human preferences and found that model-based evaluation metrics provide more semantically-oriented and human-aligned evaluation. Finally, we benchmarked a wide range of current video-language models on DeVAn, and we aim for DeVAn to serve as a useful evaluation set in the age of large language models and complex multi-modal tasks. Code is available at https://github.com/TK-21st/DeVAn.

2021

pdf bib
Learning Relation Alignment for Calibrated Cross-modal Retrieval
Shuhuai Ren | Junyang Lin | Guangxiang Zhao | Rui Men | An Yang | Jingren Zhou | Xu Sun | Hongxia Yang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Despite the achievements of large-scale multimodal pre-training approaches, cross-modal retrieval, e.g., image-text retrieval, remains a challenging task. To bridge the semantic gap between the two modalities, previous studies mainly focus on word-region alignment at the object level, lacking the matching between the linguistic relation among the words and the visual relation among the regions. The neglect of such relation consistency impairs the contextualized representation of image-text pairs and hinders the model performance and the interpretability. In this paper, we first propose a novel metric, Intra-modal Self-attention Distance (ISD), to quantify the relation consistency by measuring the semantic distance between linguistic and visual relations. In response, we present Inter-modal Alignment on Intra-modal Self-attentions (IAIS), a regularized training method to optimize the ISD and calibrate intra-modal self-attentions from the two modalities mutually via inter-modal alignment. The IAIS regularizer boosts the performance of prevailing models on Flickr30k and MS COCO datasets by a considerable margin, which demonstrates the superiority of our approach.

pdf bib
Sketch and Refine: Towards Faithful and Informative Table-to-Text Generation
Peng Wang | Junyang Lin | An Yang | Chang Zhou | Yichang Zhang | Jingren Zhou | Hongxia Yang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2019

pdf bib
Cognitive Graph for Multi-Hop Reading Comprehension at Scale
Ming Ding | Chang Zhou | Qibin Chen | Hongxia Yang | Jie Tang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We propose a new CogQA framework for multi-hop reading comprehension question answering in web-scale documents. Founded on the dual process theory in cognitive science, the framework gradually builds a cognitive graph in an iterative process by coordinating an implicit extraction module (System 1) and an explicit reasoning module (System 2). While giving accurate answers, our framework further provides explainable reasoning paths. Specifically, our implementation based on BERT and graph neural network efficiently handles millions of documents for multi-hop reasoning questions in the HotpotQA fullwiki dataset, achieving a winning joint F1 score of 34.9 on the leaderboard, compared to 23.1 of the best competitor.

pdf bib
Towards Knowledge-Based Recommender Dialog System
Qibin Chen | Junyang Lin | Yichang Zhang | Ming Ding | Yukuo Cen | Hongxia Yang | Jie Tang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

In this paper, we propose a novel end-to-end framework called KBRD, which stands for Knowledge-Based Recommender Dialog System. It integrates the recommender system and the dialog generation system. The dialog generation system can enhance the performance of the recommendation system by introducing information about users’ preferences, and the recommender system can improve that of the dialog generation system by providing recommendation-aware vocabulary bias. Experimental results demonstrate that our proposed model has significant advantages over the baselines in both the evaluation of dialog generation and recommendation. A series of analyses show that the two systems can bring mutual benefits to each other, and the introduced knowledge contributes to both their performances.