Hongyu Gong


2024

pdf bib
CLASP: Cross-modal Alignment Using Pre-trained Unimodal Models
Jianing Zhou | Ziheng Zeng | Hongyu Gong | Suma Bhat
Findings of the Association for Computational Linguistics ACL 2024

Recent advancements in joint speech-text pre-training have significantly advanced the processing of natural language. However, a key limitation is their reliance on parallel speech-text data, posing challenges due to data accessibility. Addressing this, our paper introduces an innovative framework for jointly performing speech and text processing without parallel corpora during pre-training but only downstream. Utilizing pre-trained unimodal models, we extract distinct representations for speech and text, aligning them effectively in a newly defined space using a multi-level contrastive learning mechanism. A unique swap reconstruction mechanism enhances the alignment and is followed by fusion via a multi-head mechanism, seamlessly merging modality-invariant and modality-specific representations. Testing for emotion recognition (SLU task) and idiom usage detection (NLU task) demonstrates robust performance, with commendable robustness to noise in text or speech data.

pdf bib
Textless Acoustic Model with Self-Supervised Distillation for Noise-Robust Expressive Speech-to-Speech Translation
Min-Jae Hwang | Ilia Kulikov | Benjamin Peloquin | Hongyu Gong | Peng-Jen Chen | Ann Lee
Findings of the Association for Computational Linguistics ACL 2024

In this paper, we propose a textless acoustic model with a self-supervised distillation strategy for noise-robust expressive speech-to-speech translation (S2ST).Recently proposed expressive S2ST systems have achieved impressive expressivity preservation performances by cascading unit-to-speech (U2S) generator to the speech-to-unit translation model. However, these systems are vulnerable to the presence of noise in input speech, which is an assumption in real-world translation scenarios. To address this limitation, we propose a U2S generator that incorporates a distillation with no label (DINO) self-supervised training strategy into it’s pretraining process.Because the proposed method captures noise-agnostic expressivity representation, it can generate qualified speech even in noisy environment.Objective and subjective evaluation results verified that the proposed method significantly improved the performance of the expressive S2ST system in noisy environments while maintaining competitive performance in clean environments.

2023

pdf bib
SpeechMatrix: A Large-Scale Mined Corpus of Multilingual Speech-to-Speech Translations
Paul-Ambroise Duquenne | Hongyu Gong | Ning Dong | Jingfei Du | Ann Lee | Vedanuj Goswami | Changhan Wang | Juan Pino | Benoît Sagot | Holger Schwenk
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present SpeechMatrix, a large-scale multilingual corpus of speech-to-speech translations mined from real speech of European Parliament recordings. It contains speech alignments in 136 language pairs with a total of 418 thousand hours of speech. To evaluate the quality of this parallel speech, we train bilingual speech-to-speech translation models on mined data only and establish extensive baseline results on EuroParl-ST, VoxPopuli and FLEURS test sets. Enabled by the multilinguality of SpeechMatrix, we also explore multilingual speech-to-speech translation, a topic which was addressed by few other works. We also demonstrate that model pre-training and sparse scaling using Mixture-of-Experts bring large gains to translation performance. The mined data and models will be publicly released

pdf bib
Speech-to-Speech Translation for a Real-world Unwritten Language
Peng-Jen Chen | Kevin Tran | Yilin Yang | Jingfei Du | Justine Kao | Yu-An Chung | Paden Tomasello | Paul-Ambroise Duquenne | Holger Schwenk | Hongyu Gong | Hirofumi Inaguma | Sravya Popuri | Changhan Wang | Juan Pino | Wei-Ning Hsu | Ann Lee
Findings of the Association for Computational Linguistics: ACL 2023

We study speech-to-speech translation (S2ST) that translates speech from one language into another language and focuses on building systems to support languages without standard text writing systems. We use English-Taiwanese Hokkien as a case study, and present an end-to-end solution from training data collection, modeling choices to benchmark dataset release. First, we present efforts on creating human annotated data, automatically mining data from large unlabeled speech datasets, and adopting pseudo-labeling to produce weakly supervised data. On the modeling, we take advantage of recent advances in applying self-supervised discrete representations as target for prediction in S2ST and show the effectiveness of leveraging additional text supervision from Mandarin, a language similar to Hokkien, in model training. Finally, we release an S2ST benchmark set to facilitate future research in this field.

pdf bib
Non-compositional Expression Generation Based on Curriculum Learning and Continual Learning
Jianing Zhou | Ziheng Zeng | Hongyu Gong | Suma Bhat
Findings of the Association for Computational Linguistics: EMNLP 2023

Non-compositional expressions, by virtue of their non-compositionality, are a classic ‘pain in the neck’ for NLP systems. Different from the general language modeling and generation tasks that are primarily compositional, generating non-compositional expressions is more challenging for current neural models, including large pre-trained language models. The main reasons are 1) their non-compositionality, and 2) the limited data resources. Therefore, to make the best use of available data for modeling non-compositionality, we propose a dynamic curriculum learning framework, which learns training examples from easy ones to harder ones thus optimizing the learning step by step but suffers from the forgetting problem. To alleviate the forgetting problem brought by the arrangement of training examples, we also apply a continual learning method into our curriculum learning framework. Our proposed method combined curriculum and continual learning, to gradually improve the model’s performance on the task of non-compositional expression generation. Experiments on idiomatic expression generation and metaphor generation affirm the effectiveness of our proposed curriculum learning framework and the application of continual learning. Our codes are available at https://github.com/zhjjn/CL2Gen.git.

2022

pdf bib
Textless Speech-to-Speech Translation on Real Data
Ann Lee | Hongyu Gong | Paul-Ambroise Duquenne | Holger Schwenk | Peng-Jen Chen | Changhan Wang | Sravya Popuri | Yossi Adi | Juan Pino | Jiatao Gu | Wei-Ning Hsu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We present a textless speech-to-speech translation (S2ST) system that can translate speech from one language into another language and can be built without the need of any text data. Different from existing work in the literature, we tackle the challenge in modeling multi-speaker target speech and train the systems with real-world S2ST data. The key to our approach is a self-supervised unit-based speech normalization technique, which finetunes a pre-trained speech encoder with paired audios from multiple speakers and a single reference speaker to reduce the variations due to accents, while preserving the lexical content. With only 10 minutes of paired data for speech normalization, we obtain on average 3.2 BLEU gain when training the S2ST model on the VoxPopuli S2ST dataset, compared to a baseline trained on un-normalized speech target. We also incorporate automatically mined S2ST data and show an additional 2.0 BLEU gain. To our knowledge, we are the first to establish a textless S2ST technique that can be trained with real-world data and works for multiple language pairs.

pdf bib
Unified Speech-Text Pre-training for Speech Translation and Recognition
Yun Tang | Hongyu Gong | Ning Dong | Changhan Wang | Wei-Ning Hsu | Jiatao Gu | Alexei Baevski | Xian Li | Abdelrahman Mohamed | Michael Auli | Juan Pino
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this work, we describe a method to jointly pre-train speech and text in an encoder-decoder modeling framework for speech translation and recognition. The proposed method utilizes multi-task learning to integrate four self-supervised and supervised subtasks for cross modality learning. A self-supervised speech subtask, which leverages unlabelled speech data, and a (self-)supervised text to text subtask, which makes use of abundant text training data, take up the majority of the pre-training time. Two auxiliary supervised speech tasks are included to unify speech and text modeling space. Detailed analysis reveals learning interference among subtasks. In order to alleviate the subtask interference, two pre-training configurations are proposed for speech translation and speech recognition respectively. Our experiments show the proposed method can effectively fuse speech and text information into one model. It achieves between 1.7 and 2.3 BLEU improvement above the state of the art on the MuST-C speech translation dataset and comparable WERs to wav2vec 2.0 on the Librispeech speech recognition task.

pdf bib
T-Modules: Translation Modules for Zero-Shot Cross-Modal Machine Translation
Paul-Ambroise Duquenne | Hongyu Gong | Benoît Sagot | Holger Schwenk
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We present a new approach to perform zero-shot cross-modal transfer between speech and text for translation tasks. Multilingual speech and text are encoded in a joint fixed-size representation space. Then, we compare different approaches to decode these multimodal and multilingual fixed-size representations, enabling zero-shot translation between languages and modalities. All our models are trained without the need of cross-modal labeled translation data.Despite a fixed-size representation, we achieve very competitive results on several text and speech translation tasks. In particular, we significantly improve the state-of-the-art for zero-shot speech translation on Must-C. Incorporating a speech decoder in our framework, we introduce the first results for zero-shot direct speech-to-speech and text-to-speech translation.

pdf bib
Findings of the IWSLT 2022 Evaluation Campaign
Antonios Anastasopoulos | Loïc Barrault | Luisa Bentivogli | Marcely Zanon Boito | Ondřej Bojar | Roldano Cattoni | Anna Currey | Georgiana Dinu | Kevin Duh | Maha Elbayad | Clara Emmanuel | Yannick Estève | Marcello Federico | Christian Federmann | Souhir Gahbiche | Hongyu Gong | Roman Grundkiewicz | Barry Haddow | Benjamin Hsu | Dávid Javorský | Vĕra Kloudová | Surafel Lakew | Xutai Ma | Prashant Mathur | Paul McNamee | Kenton Murray | Maria Nǎdejde | Satoshi Nakamura | Matteo Negri | Jan Niehues | Xing Niu | John Ortega | Juan Pino | Elizabeth Salesky | Jiatong Shi | Matthias Sperber | Sebastian Stüker | Katsuhito Sudoh | Marco Turchi | Yogesh Virkar | Alexander Waibel | Changhan Wang | Shinji Watanabe
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

The evaluation campaign of the 19th International Conference on Spoken Language Translation featured eight shared tasks: (i) Simultaneous speech translation, (ii) Offline speech translation, (iii) Speech to speech translation, (iv) Low-resource speech translation, (v) Multilingual speech translation, (vi) Dialect speech translation, (vii) Formality control for speech translation, (viii) Isometric speech translation. A total of 27 teams participated in at least one of the shared tasks. This paper details, for each shared task, the purpose of the task, the data that were released, the evaluation metrics that were applied, the submissions that were received and the results that were achieved.

2021

pdf bib
FST: the FAIR Speech Translation System for the IWSLT21 Multilingual Shared Task
Yun Tang | Hongyu Gong | Xian Li | Changhan Wang | Juan Pino | Holger Schwenk | Naman Goyal
Proceedings of the 18th International Conference on Spoken Language Translation (IWSLT 2021)

In this paper, we describe our end-to-end multilingual speech translation system submitted to the IWSLT 2021 evaluation campaign on the Multilingual Speech Translation shared task. Our system is built by leveraging transfer learning across modalities, tasks and languages. First, we leverage general-purpose multilingual modules pretrained with large amounts of unlabelled and labelled data. We further enable knowledge transfer from the text task to the speech task by training two tasks jointly. Finally, our multilingual model is finetuned on speech translation task-specific data to achieve the best translation results. Experimental results show our system outperforms the reported systems, including both end-to-end and cascaded based approaches, by a large margin. In some translation directions, our speech translation results evaluated on the public Multilingual TEDx test set are even comparable with the ones from a strong text-to-text translation system, which uses the oracle speech transcripts as input.

pdf bib
WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia
Holger Schwenk | Vishrav Chaudhary | Shuo Sun | Hongyu Gong | Francisco Guzmán
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

We present an approach based on multilingual sentence embeddings to automatically extract parallel sentences from the content of Wikipedia articles in 96 languages, including several dialects or low-resource languages. We do not limit the extraction process to alignments with English, but we systematically consider all possible language pairs. In total, we are able to extract 135M parallel sentences for 16720 different language pairs, out of which only 34M are aligned with English. This corpus is freely available. To get an indication on the quality of the extracted bitexts, we train neural MT baseline systems on the mined data only for 1886 languages pairs, and evaluate them on the TED corpus, achieving strong BLEU scores for many language pairs. The WikiMatrix bitexts seem to be particularly interesting to train MT systems between distant languages without the need to pivot through English.

pdf bib
PIE: A Parallel Idiomatic Expression Corpus for Idiomatic Sentence Generation and Paraphrasing
Jianing Zhou | Hongyu Gong | Suma Bhat
Proceedings of the 17th Workshop on Multiword Expressions (MWE 2021)

Idiomatic expressions (IE) play an important role in natural language, and have long been a “pain in the neck” for NLP systems. Despite this, text generation tasks related to IEs remain largely under-explored. In this paper, we propose two new tasks of idiomatic sentence generation and paraphrasing to fill this research gap. We introduce a curated dataset of 823 IEs, and a parallel corpus with sentences containing them and the same sentences where the IEs were replaced by their literal paraphrases as the primary resource for our tasks. We benchmark existing deep learning models, which have state-of-the-art performance on related tasks using automated and manual evaluation with our dataset to inspire further research on our proposed tasks. By establishing baseline models, we pave the way for more comprehensive and accurate modeling of IEs, both for generation and paraphrasing.

2020

pdf bib
Rich Syntactic and Semantic Information Helps Unsupervised Text Style Transfer
Hongyu Gong | Linfeng Song | Suma Bhat
Proceedings of the 13th International Conference on Natural Language Generation

Text style transfer aims to change an input sentence to an output sentence by changing its text style while preserving the content. Previous efforts on unsupervised text style transfer only use the surface features of words and sentences. As a result, the transferred sentences may either have inaccurate or missing information compared to the inputs. We address this issue by explicitly enriching the inputs via syntactic and semantic structures, from which richer features are then extracted to better capture the original information. Experiments on two text-style-transfer tasks show that our approach improves the content preservation of a strong unsupervised baseline model thereby demonstrating improved transfer performance.

pdf bib
Recurrent Chunking Mechanisms for Long-Text Machine Reading Comprehension
Hongyu Gong | Yelong Shen | Dian Yu | Jianshu Chen | Dong Yu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In this paper, we study machine reading comprehension (MRC) on long texts: where a model takes as inputs a lengthy document and a query, extracts a text span from the document as an answer. State-of-the-art models (e.g., BERT) tend to use a stack of transformer layers that are pre-trained from a large number of unlabeled language corpora to encode the joint contextual information of query and document. However, these transformer models can only take as input a fixed-length (e.g., 512) text. To deal with even longer text inputs, previous approaches usually chunk them into equally-spaced segments and predict answers based on each segment independently without considering the information from other segments. As a result, they may form segments that fail to cover complete answers or retain insufficient contexts around the correct answer required for question answering. Moreover, they are less capable of answering questions that need cross-segment information. We propose to let a model learn to chunk in a more flexible way via reinforcement learning: a model can decide the next segment that it wants to process in either direction. We also apply recurrent mechanisms to enable information to flow across segments. Experiments on three MRC tasks – CoQA, QuAC, and TriviaQA – demonstrate the effectiveness of our proposed recurrent chunking mechanisms: we can obtain segments that are more likely to contain complete answers and at the same time provide sufficient contexts around the ground truth answers for better predictions.

pdf bib
Enriching Word Embeddings with Temporal and Spatial Information
Hongyu Gong | Suma Bhat | Pramod Viswanath
Proceedings of the 24th Conference on Computational Natural Language Learning

The meaning of a word is closely linked to sociocultural factors that can change over time and location, resulting in corresponding meaning changes. Taking a global view of words and their meanings in a widely used language, such as English, may require us to capture more refined semantics for use in time-specific or location-aware situations, such as the study of cultural trends or language use. However, popular vector representations for words do not adequately include temporal or spatial information. In this work, we present a model for learning word representation conditioned on time and location. In addition to capturing meaning changes over time and location, we require that the resulting word embeddings retain salient semantic and geometric properties. We train our model on time- and location-stamped corpora, and show using both quantitative and qualitative evaluations that it can capture semantics across time and locations. We note that our model compares favorably with the state-of-the-art for time-specific embedding, and serves as a new benchmark for location-specific embeddings.

pdf bib
IlliniMet: Illinois System for Metaphor Detection with Contextual and Linguistic Information
Hongyu Gong | Kshitij Gupta | Akriti Jain | Suma Bhat
Proceedings of the Second Workshop on Figurative Language Processing

Metaphors are rhetorical use of words based on the conceptual mapping as opposed to their literal use. Metaphor detection, an important task in language understanding, aims to identify metaphors in word level from given sentences. We present IlliniMet, a system to automatically detect metaphorical words. Our model combines the strengths of the contextualized representation by the widely used RoBERTa model and the rich linguistic information from external resources such as WordNet. The proposed approach is shown to outperform strong baselines on a benchmark dataset. Our best model achieves F1 scores of 73.0% on VUA ALLPOS, 77.1% on VUA VERB, 70.3% on TOEFL ALLPOS and 71.9% on TOEFL VERB.

2019

pdf bib
Reinforcement Learning Based Text Style Transfer without Parallel Training Corpus
Hongyu Gong | Suma Bhat | Lingfei Wu | JinJun Xiong | Wen-mei Hwu
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Text style transfer rephrases a text from a source style (e.g., informal) to a target style (e.g., formal) while keeping its original meaning. Despite the success existing works have achieved using a parallel corpus for the two styles, transferring text style has proven significantly more challenging when there is no parallel training corpus. In this paper, we address this challenge by using a reinforcement-learning-based generator-evaluator architecture. Our generator employs an attention-based encoder-decoder to transfer a sentence from the source style to the target style. Our evaluator is an adversarially trained style discriminator with semantic and syntactic constraints that score the generated sentence for style, meaning preservation, and fluency. Experimental results on two different style transfer tasks–sentiment transfer, and formality transfer–show that our model outperforms state-of-the-art approaches. Furthermore, we perform a manual evaluation that demonstrates the effectiveness of the proposed method using subjective metrics of generated text quality.

pdf bib
PaRe: A Paper-Reviewer Matching Approach Using a Common Topic Space
Omer Anjum | Hongyu Gong | Suma Bhat | Wen-Mei Hwu | JinJun Xiong
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Finding the right reviewers to assess the quality of conference submissions is a time consuming process for conference organizers. Given the importance of this step, various automated reviewer-paper matching solutions have been proposed to alleviate the burden. Prior approaches including bag-of-words model and probabilistic topic model are less effective to deal with the vocabulary mismatch and partial topic overlap between the submission and reviewer. Our approach, the common topic model, jointly models the topics common to the submission and the reviewer’s profile while relying on abstract topic vectors. Experiments and insightful evaluations on two datasets demonstrate that the proposed method achieves consistent improvements compared to the state-of-the-art.

pdf bib
Equipping Educational Applications with Domain Knowledge
Tarek Sakakini | Hongyu Gong | Jong Yoon Lee | Robert Schloss | JinJun Xiong | Suma Bhat
Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications

One of the challenges of building natural language processing (NLP) applications for education is finding a large domain-specific corpus for the subject of interest (e.g., history or science). To address this challenge, we propose a tool, Dexter, that extracts a subject-specific corpus from a heterogeneous corpus, such as Wikipedia, by relying on a small seed corpus and distributed document representations. We empirically show the impact of the generated corpus on language modeling, estimating word embeddings, and consequently, distractor generation, resulting in better performances than while using a general domain corpus, a heuristically constructed domain-specific corpus, and a corpus generated by a popular system: BootCaT.

2018

pdf bib
Embedding Syntax and Semantics of Prepositions via Tensor Decomposition
Hongyu Gong | Suma Bhat | Pramod Viswanath
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Prepositions are among the most frequent words in English and play complex roles in the syntax and semantics of sentences. Not surprisingly, they pose well-known difficulties in automatic processing of sentences (prepositional attachment ambiguities and idiosyncratic uses in phrases). Existing methods on preposition representation treat prepositions no different from content words (e.g., word2vec and GloVe). In addition, recent studies aiming at solving prepositional attachment and preposition selection problems depend heavily on external linguistic resources and use dataset-specific word representations. In this paper we use word-triple counts (one of the triples being a preposition) to capture a preposition’s interaction with its attachment and complement. We then derive preposition embeddings via tensor decomposition on a large unlabeled corpus. We reveal a new geometry involving Hadamard products and empirically demonstrate its utility in paraphrasing phrasal verbs. Furthermore, our preposition embeddings are used as simple features in two challenging downstream tasks: preposition selection and prepositional attachment disambiguation. We achieve results comparable to or better than the state-of-the-art on multiple standardized datasets.

pdf bib
Document Similarity for Texts of Varying Lengths via Hidden Topics
Hongyu Gong | Tarek Sakakini | Suma Bhat | JinJun Xiong
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Measuring similarity between texts is an important task for several applications. Available approaches to measure document similarity are inadequate for document pairs that have non-comparable lengths, such as a long document and its summary. This is because of the lexical, contextual and the abstraction gaps between a long document of rich details and its concise summary of abstract information. In this paper, we present a document matching approach to bridge this gap, by comparing the texts in a common space of hidden topics. We evaluate the matching algorithm on two matching tasks and find that it consistently and widely outperforms strong baselines. We also highlight the benefits of the incorporation of domain knowledge to text matching.

pdf bib
Preposition Sense Disambiguation and Representation
Hongyu Gong | Jiaqi Mu | Suma Bhat | Pramod Viswanath
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Prepositions are highly polysemous, and their variegated senses encode significant semantic information. In this paper we match each preposition’s left- and right context, and their interplay to the geometry of the word vectors to the left and right of the preposition. Extracting these features from a large corpus and using them with machine learning models makes for an efficient preposition sense disambiguation (PSD) algorithm, which is comparable to and better than state-of-the-art on two benchmark datasets. Our reliance on no linguistic tool allows us to scale the PSD algorithm to a large corpus and learn sense-specific preposition representations. The crucial abstraction of preposition senses as word representations permits their use in downstream applications–phrasal verb paraphrasing and preposition selection–with new state-of-the-art results.