In the era of the digital world, while freedom of speech has been flourishing, it has also paved the way for disinformation, causing detrimental effects on society. Legal and ethical criteria are insufficient to address this concern, thus necessitating technological intervention. This paper presents a novel method leveraging pre-finetuning concept for efficient detection and removal of disinformation that may undermine society, as deemed by judicial entities. We argue the importance of detecting this type of disinformation and validate our approach with real-world data derived from court orders. Following a study that highlighted four areas of interest for rumor analysis, our research proposes the integration of a fine-grained sentiment analysis task in the pre-finetuning phase of language models, using the GoEmotions dataset. Our experiments validate the effectiveness of our approach in enhancing performance significantly. Furthermore, we explore the application of our approach across different languages using multilingual language models, showing promising results. To our knowledge, this is the first study that investigates the role of sentiment analysis pre-finetuning in disinformation detection.
In this paper, we investigate the phenomena of “selection biases” in Large Language Models (LLMs), focusing on problems where models are tasked with choosing the optimal option from an ordered sequence. We delve into biases related to option order and token usage, which significantly impact LLMs’ decision-making processes. We also quantify the impact of these biases through an extensive empirical analysis across multiple models and tasks. Furthermore, we propose mitigation strategies to enhance model performance. Our key contributions are threefold: 1) Precisely quantifying the influence of option order and token on LLMs, 2) Developing strategies to mitigate the impact of token and order sensitivity to enhance robustness, and 3) Offering a detailed analysis of sensitivity across models and tasks, which informs the creation of more stable and reliable LLM applications for selection problems.
This paper introduces a novel approach to analyzing the forward-looking statements in equity research reports by integrating argument mining with sentiment analysis. Recognizing the limitations of traditional models in capturing the nuances of future-oriented analysis, we propose a refined categorization of argument units into claims, premises, and scenarios, coupled with a unique sentiment analysis framework. Furthermore, we incorporate a temporal dimension to categorize the anticipated impact duration of market events. To facilitate this study, we present the Equity Argument Mining and Sentiment Analysis (Equity-AMSA) dataset. Our research investigates the extent to which detailed domain-specific annotations can be provided, the necessity of fine-grained human annotations in the era of large language models, and whether our proposed framework can improve performance in downstream tasks over traditional methods. Experimental results reveal the significance of manual annotations, especially for scenario identification and sentiment analysis. The study concludes that our annotation scheme and dataset contribute to a deeper understanding of forward-looking statements in equity research reports.
Argument mining has typically been researched for specific corpora belonging to concrete languages and domains independently in each research work. Human argumentation, however, has domain- and language-dependent linguistic features that determine the content and structure of arguments. Also, when deploying argument mining systems in the wild, we might not be able to control some of these features. Therefore, an important aspect that has not been thoroughly investigated in the argument mining literature is the robustness of such systems to variations in language and domain. In this paper, we present a complete analysis across three different languages and three different domains that allow us to have a better understanding on how to leverage the scarce available corpora to design argument mining systems that are more robust to natural language variations.
Headline generation, a key task in abstractive summarization, strives to condense a full-length article into a succinct, single line of text. Notably, while contemporary encoder-decoder models excel based on the ROUGE metric, they often falter when it comes to the precise generation of numerals in headlines. We identify the lack of datasets providing fine-grained annotations for accurate numeral generation as a major roadblock. To address this, we introduce a new dataset, the NumHG, and provide over 27,000 annotated numeral-rich news articles for detailed investigation. Further, we evaluate five well-performing models from previous headline-generation tasks using human evaluation in terms of numerical accuracy, reasonableness, and readability. Our study reveals a need for improvement in numerical accuracy, demonstrating the potential of the NumHG dataset to drive progress in number-focused headline generation and stimulate further discussions in numeral-focused text generation.
Numbers are frequently utilized in both our daily narratives and professional documents, such as clinical notes, scientific papers, financial documents, and legal court orders. The ability to understand and generate numbers is thus one of the essential aspects of evaluating large language models. In this vein, we propose a collection of datasets in SemEval-2024 Task 7 - NumEval. This collection encompasses several tasks focused on numeral-aware instances, including number prediction, natural language inference, question answering, reading comprehension, reasoning, and headline generation. This paper offers an overview of the dataset and presents the results of all subtasks in NumEval. Additionally, we contribute by summarizing participants’ methods and conducting an error analysis. To the best of our knowledge, NumEval represents one of the early tasks that perform peer evaluation in SemEval’s history. We will further share observations from this aspect and provide suggestions for future SemEval tasks.
To accurately assess the dynamic impact of a company’s activities on its Environmental, Social, and Governance (ESG) scores, we have initiated a series of shared tasks, named ML-ESG. These tasks adhere to the MSCI guidelines for annotating news articles across various languages. This paper details the third iteration of our series, ML-ESG-3, with a focus on impact duration inference—a task that poses significant challenges in estimating the enduring influence of events, even for human analysts. In ML-ESG-3, we provide datasets in five languages (Chinese, English, French, Korean, and Japanese) and share insights from our experience in compiling such subjective datasets. Additionally, this paper reviews the methodologies proposed by ML-ESG-3 participants and offers a comparative analysis of the models’ performances. Concluding the paper, we introduce the concept for the forthcoming series of shared tasks, namely multi-lingual ESG promise verification, and discuss its potential contributions to the field.
Assessing a company’s sustainable development goes beyond just financial metrics; the inclusion of environmental, social, and governance (ESG) factors is becoming increasingly vital. The ML-ESG shared task series seeks to pioneer discussions on news-driven ESG ratings, drawing inspiration from the MSCI ESG rating guidelines. In its second edition, ML-ESG-2 emphasizes impact type identification, offering datasets in four languages: Chinese, English, French, and Japanese. Of the 28 teams registered, 8 participated in the official evaluation. This paper presents a comprehensive overview of ML-ESG-2, detailing the dataset specifics and summarizing the performance outcomes of the participating teams.
Fake news and misinformation spread rapidly on the Internet. How to identify it and how to interpret the identification results have become important issues. In this paper, we propose a Dual Co-Attention Network (Dual-CAN) for fake news detection, which takes news content, social media replies, and external knowledge into consideration. Our experimental results support that the proposed Dual-CAN outperforms current representative models in two benchmark datasets. We further make in-depth discussions by comparing how models work in both datasets with empirical analysis of attention weights.
Lifelogging has gained more attention due to its wide applications, such as personalized recommendations or memory assistance. The issues of collecting and extracting personal life events have emerged. People often share their life experiences with others through conversations. However, extracting life events from conversations is rarely explored. In this paper, we present Life Event Dialog, a dataset containing fine-grained life event annotations on conversational data. In addition, we initiate a novel Conversational Life Event Extraction task and differentiate the task from the public event extraction or the life event extraction from other sources like microblogs. We explore three information extraction (IE) frameworks to address the Conversational Life Event Extraction task: OpenIE, relation extraction, and event extraction. A comprehensive empirical analysis of the three baselines is established. The results suggest that the current event extraction model still struggles with extracting life events from human daily conversations. Our proposed Life Event Dialog dataset and in-depth analysis of IE frameworks will facilitate future research on life event extraction from conversations.
Language models (LMs) that jointly generate end-task answers as well as free-text rationales are known as self-rationalization models. Recent works demonstrate great performance gain for self-rationalization by few-shot prompting LMs with rationale-augmented exemplars. However, the ability to benefit from explanations only emerges with large-scale LMs, which have poor accessibility. In this work, we explore the less-studied setting of leveraging explanations for small LMs to improve few-shot self-rationalization. We first revisit the relationship between rationales and answers. Inspired by the implicit mental process of how human beings assess explanations, we present a novel approach, Zero-shot Augmentation of Rationale-Answer pairs (ZARA), to automatically construct pseudo-parallel data for self-training by reducing the problem of plausibility judgement to natural language inference. Experimental results show ZARA achieves SOTA performance on the FEB benchmark, for both the task accuracy and the explanation metric. In addition, we conduct human and quantitative evaluation validating ZARA’s ability to automatically identify plausible and accurate rationale-answer pairs.
In various scenarios, such as conference oral presentations, company managers’ talks, and politicians’ speeches, individuals often contemplate the potential questions that may arise from their presentations. This common practice prompts the research question addressed in this study: to what extent can models generate multiple questions based on a given presentation transcript? To investigate this, we conduct pilot explorations using earnings conference call transcripts, which serve as regular meetings between professional investors and company managers. We experiment with different task settings and methods and evaluate the results from various perspectives. Our findings highlight that incorporating key points retrieval techniques enhances the accuracy and diversity of the generated questions.
In this paper, we address the hallucination problem commonly found in natural language generation tasks. Language models often generate fluent and convincing content but can lack consistency with the provided source, resulting in potential inaccuracies. We propose a new decoding method called Fidelity-Enriched Contrastive Search (FECS), which augments the contrastive search framework with context-aware regularization terms. FECS promotes tokens that are semantically similar to the provided source while penalizing repetitiveness in the generated text. We demonstrate its effectiveness across two tasks prone to hallucination: abstractive summarization and dialogue generation. Results show that FECS consistently enhances faithfulness across various language model sizes while maintaining output diversity comparable to well-performing decoding algorithms.
Large language models (LLMs) have exhibited striking in-context learning (ICL) ability to adapt to target tasks with a few input-output demonstrations. For better ICL, different methods are proposed to select representative demonstrations from existing training corpora. However, such settings are not aligned with real-world practices, as end-users usually query LMs without access to demonstration pools. In this work, we introduce Self-ICL—a simple framework which bootstraps LMs’ intrinsic capabilities to perform zero-shot ICL. Given a test input, Self-ICL first prompts the model to generate pseudo-inputs. Next, the model predicts pseudo-labels for the pseudo-inputs via zero-shot prompting. Finally, we perform ICL for the test input with the pseudo-input-label pairs as demonstrations. Evaluation on 23 BIG-Bench Hard tasks shows Self-ICL outperforms zero-shot baselines on both average accuracy and head-to-head comparison. Moreover, with zero-shot chain-of-thought, Self-ICL achieves results comparable to using real demonstrations. Additionally, we conduct a range of analyses to validate Self-ICL’s effectiveness and provide insights for its behaviors under different settings.
When recalling life experiences, people often forget or confuse life events, which necessitates information recall services. Previous work on information recall focuses on providing such assistance reactively, i.e., by retrieving the life event of a given query. Proactively detecting the need for information recall services is rarely discussed. In this paper, we use a human-annotated life experience retelling dataset to detect the right time to trigger the information recall service. We propose a pilot model—structured event enhancement network (SEEN) that detects life event inconsistency, additional information in life events, and forgotten events. A fusing mechanism is also proposed to incorporate event graphs of stories and enhance the textual representations. To explain the need detection results, SEEN simultaneously provides support evidence by selecting the related nodes from the event graph. Experimental results show that SEEN achieves promising performance in detecting information needs. In addition, the extracted evidence can be served as complementary information to remind users what events they may want to recall.
Explaining the reasoning of neural models has attracted attention in recent years. Providing highly-accessible and comprehensible explanations in natural language is useful for humans to understand model’s prediction results. In this work, we present a pilot study to investigate explanation generation with a narrative and causal structure for the scenario of health consulting. Our model generates a medical suggestion regarding the patient’s concern and provides an explanation as the outline of the reasoning. To align the generated explanation with the suggestion, we propose a novel discourse-aware mechanism with multi-task learning. Experimental results show that our model achieves promising performances in both quantitative and human evaluation.
This paper provides an overview of the shared task, Evaluating the Rationales of Amateur Investors (ERAI), in FinNLP-2022 at EMNLP-2022. This shared task aims to sort out investment opinions that would lead to higher profit from social platforms. We obtained 19 registered teams; 9 teams submitted their results for final evaluation, and 8 teams submitted papers to share their methods. The discussed directions are various: prompting, fine-tuning, translation system comparison, and tailor-made neural network architectures. We provide details of the task settings, data statistics, participants’ results, and fine-grained analysis.
Both the issues of data deficiencies and semantic consistency are important for data augmentation. Most of previous methods address the first issue, but ignore the second one. In the cases of aspect-based sentiment analysis, violation of the above issues may change the aspect and sentiment polarity. In this paper, we propose a semantics-preservation data augmentation approach by considering the importance of each word in a textual sequence according to the related aspects and sentiments. We then substitute the unimportant tokens with two replacement strategies without altering the aspect-level polarity. Our approach is evaluated on several publicly available sentiment analysis datasets and the real-world stock price/risk movement prediction scenarios. Experimental results show that our methodology achieves better performances in all datasets.
In this tutorial, we will show where we are and where we will be to those researchers interested in this topic. We divide this tutorial into three parts, including coarse-grained financial opinion mining, fine-grained financial opinion mining, and possible research directions. This tutorial starts by introducing the components in a financial opinion proposed in our research agenda and summarizes their related studies. We also highlight the task of mining customers’ opinions toward financial services in the FinTech industry, and compare them with usual opinions. Several potential research questions will be addressed. We hope the audiences of this tutorial will gain an overview of financial opinion mining and figure out their research directions.
Textual information extraction is a typical research topic in the NLP community. Several NLP tasks such as named entity recognition and relation extraction between entities have been well-studied in previous work. However, few works pay their attention to the implicit information. For example, a financial news article mentioned “Apple Inc.” may be also related to Samsung, even though Samsung is not explicitly mentioned in this article. This work presents a novel dynamic graph transformer that distills the textual information and the entity relations on the fly. Experimental results confirm the effectiveness of our approach to implicit tag recognition.
This work proposes a standalone, complete Chinese discourse parser for practical applications. We approach Chinese discourse parsing from a variety of aspects and improve the shift-reduce parser not only by integrating the pre-trained text encoder, but also by employing novel training strategies. We revise the dynamic-oracle procedure for training the shift-reduce parser, and apply unsupervised data augmentation to enhance rhetorical relation recognition. Experimental results show that our Chinese discourse parser achieves the state-of-the-art performance.
In order to provide an explanation of machine learning models, causality detection attracts lots of attention in the artificial intelligence research community. In this paper, we explore the cause-effect detection in financial news and propose an approach, which combines the BIO scheme with the Viterbi decoder for addressing this challenge. Our approach is ranked the first in the official run of cause-effect detection (Task 2) of the FinCausal-2020 shared task. We not only report the implementation details and ablation analysis in this paper, but also publish our code for academic usage.
Most recent works in the field of grammatical error correction (GEC) rely on neural machine translation-based models. Although these models boast impressive performance, they require a massive amount of data to properly train. Furthermore, NMT-based systems treat GEC purely as a translation task and overlook the editing aspect of it. In this work we propose a heterogeneous approach to Chinese GEC, composed of a NMT-based model, a sequence editing model, and a spell checker. Our methodology not only achieves a new state-of-the-art performance for Chinese GEC, but also does so without relying on data augmentation or GEC-specific architecture changes. We further experiment with all possible configurations of our system with respect to model composition order and number of rounds of correction. A detailed analysis of each model and their contributions to the correction process is performed by adapting the ERRANT scorer to be able to score Chinese sentences.
A dialogue dataset is an indispensable resource for building a dialogue system. Additional information like emotions and interpersonal relationships labeled on conversations enables the system to capture the emotion flow of the participants in the dialogue. However, there is no publicly available Chinese dialogue dataset with emotion and relation labels. In this paper, we collect the conversions from TV series scripts, and annotate emotion and interpersonal relationship labels on each utterance. This dataset contains 25,548 utterances from 4,142 dialogues. We also set up some experiments to observe the effects of the responded utterance on the current utterance, and the correlation between emotion and relation types in emotion and relation classification tasks.
Chinese discourse parsing, which aims to identify the hierarchical relationships of Chinese elementary discourse units, has not yet a consistent evaluation metric. Although Parseval is commonly used, variations of evaluation differ from three aspects: micro vs. macro F1 scores, binary vs. multiway ground truth, and left-heavy vs. right-heavy binarization. In this paper, we first propose a neural network model that unifies a pre-trained transformer and CKY-like algorithm, and then compare it with the previous models with different evaluation scenarios. The experimental results show that our model outperforms the previous systems. We conclude that (1) the pre-trained context embedding provides effective solutions to deal with implicit semantics in Chinese texts, and (2) using multiway ground truth is helpful since different binarization approaches lead to significant differences in performance.
Sense embedding models handle polysemy by giving each distinct meaning of a word form a separate representation. They are considered improvements over word models, and their effectiveness is usually judged with benchmarks such as semantic similarity datasets. However, most of these datasets are not designed for evaluating sense embeddings. In this research, we show that there are at least six concerns about evaluating sense embeddings with existing benchmark datasets, including the large proportions of single-sense words and the unexpected inferior performance of several multi-sense models to their single-sense counterparts. These observations call into serious question whether evaluations based on these datasets can reflect the sense model’s ability to capture different meanings. To address the issues, we propose the Multi-Sense Dataset (MSD-1030), which contains a high ratio of multi-sense word pairs. A series of analyses and experiments show that MSD-1030 serves as a more reliable benchmark for sense embeddings. The dataset is available at http://nlg.csie.ntu.edu.tw/nlpresource/MSD-1030/.
In this paper, we investigate the annotation of financial social media data from several angles. We present Fin-SoMe, a dataset with 10,000 labeled financial tweets annotated by experts from both the front desk and the middle desk in a bank’s treasury. These annotated results reveal that (1) writer-labeled market sentiment may be a misleading label; (2) writer’s sentiment and market sentiment of an investor may be different; (3) most financial tweets provide unfounded analysis results; and (4) almost no investors write down the gain/loss results for their positions, which would otherwise greatly facilitate detailed evaluation of their performance. Based on these results, we address various open problems and suggest possible directions for future work on financial social media data. We also provide an experiment on the key snippet extraction task to compare the performance of using a general sentiment dictionary and using the domain-specific dictionary. The results echo our findings from the experts’ annotations.
This paper presents our hierarchical multi-task learning (HMTL) and multi-task learning (MTL) approaches for improving the text encoder in Sub-tasks A, B, and C of Multilingual Offensive Language Identification in Social Media (SemEval-2020 Task 12). We show that using the MTL approach can greatly improve the performance of complex problems, i.e. Sub-tasks B and C. Coupled with a hierarchical approach, the performances are further improved. Overall, our best model, HMTL outperforms the baseline model by 3% and 2% of Macro F-score in Sub-tasks B and C of OffensEval 2020, respectively.
Identification of argumentative components is an important stage of argument mining. Lexicon information is reported as one of the most frequently used features in the argument mining research. In this paper, we propose a methodology to integrate lexicon information into a neural network model by attention mechanism. We conduct experiments on the UKP dataset, which is collected from heterogeneous sources and contains several text types, e.g., microblog, Wikipedia, and news. We explore lexicons from various application scenarios such as sentiment analysis and emotion detection. We also compare the experimental results of leveraging different lexicons.
In this paper, we attempt to answer the question of whether neural network models can learn numeracy, which is the ability to predict the magnitude of a numeral at some specific position in a text description. A large benchmark dataset, called Numeracy-600K, is provided for the novel task. We explore several neural network models including CNN, GRU, BiGRU, CRNN, CNN-capsule, GRU-capsule, and BiGRU-capsule in the experiments. The results show that the BiGRU model gets the best micro-averaged F1 score of 80.16%, and the GRU-capsule model gets the best macro-averaged F1 score of 64.71%. Besides discussing the challenges through comprehensive experiments, we also present an important application scenario, i.e., detecting exaggerated information, for the task.
With the aid of recently proposed word embedding algorithms, the study of semantic similarity has progressed and advanced rapidly. However, many natural language processing tasks need sense level representation. To address this issue, some researches propose sense embedding learning algorithms. In this paper, we present a generalized model from existing sense retrofitting model. The generalization takes three major components: semantic relations between the senses, the relation strength and the semantic strength. In the experiment, we show that the generalized model can outperform previous approaches in three types of experiment: semantic relatedness, contextual word similarity and semantic difference.
With more and more people around the world learning Chinese as a second language, the need of Chinese error correction tools is increasing. In the HSK dynamic composition corpus, word usage error (WUE) is the most common error type. In this paper, we build a neural network model that considers both target erroneous token and context to generate a correction vector and compare it against a candidate vocabulary to propose suitable corrections. To deal with potential alternative corrections, the top five proposed candidates are judged by native Chinese speakers. For more than 91% of the cases, our system can propose at least one acceptable correction within a list of five candidates. To the best of our knowledge, this is the first research addressing general-type Chinese WUE correction. Our system can help non-native Chinese learners revise their sentences by themselves.
This paper demonstrates an end-to-end Chinese discourse parser. We propose a unified framework based on recursive neural network (RvNN) to jointly model the subtasks including elementary discourse unit (EDU) segmentation, tree structure construction, center labeling, and sense labeling. Experimental results show our parser achieves the state-of-the-art performance in the Chinese Discourse Treebank (CDTB) dataset. We release the source code with a pre-trained model for the NLP community. To the best of our knowledge, this is the first open source toolkit for Chinese discourse parsing. The standalone toolkit can be integrated into subsequent applications without the need of external resources such as syntactic parser.
We present a Chinese writing correction system for learning Chinese as a foreign language. The system takes a wrong input sentence and generates several correction suggestions. It also retrieves example Chinese sentences with English translations, helping users understand the correct usages of certain grammar patterns. This is the first available Chinese writing error correction system based on the neural machine translation framework. We discuss several design choices and show empirical results to support our decisions.
The reliability of self-labeled data is an important issue when the data are regarded as ground-truth for training and testing learning-based models. This paper addresses the issue of false-alarm hashtags in the self-labeled data for irony detection. We analyze the ambiguity of hashtag usages and propose a novel neural network-based model, which incorporates linguistic information from different aspects, to disambiguate the usage of three hashtags that are widely used to collect the training data for irony detection. Furthermore, we apply our model to prune the self-labeled training data. Experimental results show that the irony detection model trained on the less but cleaner training instances outperforms the models trained on all data.
This paper presents the NTU NLP Lab system for the SemEval-2018 Capturing Discriminative Attributes task. Word embeddings, pointwise mutual information (PMI), ConceptNet edges and shortest path lengths are utilized as input features to build binary classifiers to tell whether an attribute is discriminative for a pair of concepts. Our neural network model reaches about 73% F1 score on the test set and ranks the 3rd in the task. Though the attributes to deal with in this task are all visual, our models are not provided with any image data. The results indicate that visual information can be derived from textual data.
This paper presents an approach to identify subject, type and property from knowledge base (KB) for answering simple questions. We propose new features to rank entity candidates in KB. Besides, we split a relation in KB into type and property. Each of them is modeled by a bi-directional LSTM. Experimental results show that our model achieves the state-of-the-art performance on the SimpleQuestions dataset. The hard questions in the experiments are also analyzed in detail.
Short length, multi-targets, target relation-ship, monetary expressions, and outside reference are characteristics of financial tweets. This paper proposes methods to extract target spans from a tweet and its referencing web page. Total 15 publicly available sentiment dictionaries and one sentiment dictionary constructed from training set, containing sentiment scores in binary or real numbers, are used to compute the sentiment scores of text spans. Moreover, the correlation coeffi-cients of the price return between any two stocks are learned with the price data from Bloomberg. They are used to capture the relationships between the interesting tar-get and other stocks mentioned in a tweet. The best result of our method in both sub-task are 56.68% and 55.43%, evaluated by evaluation method 2.
This study proposes a system to participate in the Clinical TempEval 2017 shared task, a part of the SemEval 2017 Tasks. Domain adaptation was the main challenge this year. We took part in the supervised domain adaption where data of 591 records of colon cancer patients and 30 records of brain cancer patients from Mayo clinic were given and we are asked to analyze the records from brain cancer patients. Based on the THYME corpus released by the organizer of Clinical TempEval, we propose a framework that automatically analyzes clinical temporal events in a fine-grained level. Support vector machine (SVM) and conditional random field (CRF) were implemented in our system for different subtasks, including detecting clinical relevant events and time expression, determining their attributes, and identifying their relations with each other within the document. The results showed the capability of domain adaptation of our system.
Selecting appropriate words to compose a sentence is one common problem faced by non-native Chinese learners. In this paper, we propose (bidirectional) LSTM sequence labeling models and explore various features to detect word usage errors in Chinese sentences. By combining CWINDOW word embedding features and POS information, the best bidirectional LSTM model achieves accuracy 0.5138 and MRR 0.6789 on the HSK dataset. For 80.79% of the test data, the model ranks the ground-truth within the top two at position level.
Misuse of Chinese prepositions is one of common word usage errors in grammatical error diagnosis. In this paper, we adopt the Chinese Gigaword corpus and HSK corpus as L1 and L2 corpora, respectively. We explore gated recurrent neural network model (GRU), and an ensemble of GRU model and maximum entropy language model (GRU-ME) to select the best preposition from 43 candidates for each test sentence. The experimental results show the advantage of the GRU models over simple RNN and n-gram models. We further analyze the effectiveness of linguistic information such as word boundary and part-of-speech tag in this task.
In this paper, we investigate four important issues together for explicit discourse relation labelling in Chinese texts: (1) discourse connective extraction, (2) linking ambiguity resolution, (3) relation type disambiguation, and (4) argument boundary identification. In a pipelined Chinese discourse parser, we identify potential connective candidates by string matching, eliminate non-discourse usages from them with a binary classifier, resolve linking ambiguities among connective components by ranking, disambiguate relation types by a multiway classifier, and determine the argument boundaries by conditional random fields. The experiments on Chinese Discourse Treebank show that the F1 scores of 0.7506, 0.7693, 0.7458, and 0.3134 are achieved for discourse usage disambiguation, linking disambiguation, relation type disambiguation, and argument boundary identification, respectively, in a pipelined Chinese discourse parser.
This paper explores the role of tense information in Chinese causal analysis. Both tasks of causal type classification and causal directionality identification are experimented to show the significant improvement gained from tense features. To automatically extract the tense features, a Chinese tense predictor is proposed. Based on large amount of parallel data, our semi-supervised approach improves the dependency-based convolutional neural network (DCNN) models for Chinese tense labelling and thus the causal analysis.
Words to express relations in natural language (NL) statements may be different from those to represent properties in knowledge bases (KB). The vocabulary gap becomes barriers for knowledge base construction and retrieval. With the demo system called NL2KB in this paper, users can browse which properties in KB side may be mapped to for a given relational pattern in NL side. Besides, they can retrieve the sets of relational patterns in NL side for a given property in KB side. We describe how the mapping is established in detail. Although the mined patterns are used for Chinese knowledge base applications, the methodology can be extended to other languages.
Automated grammatical error detection, which helps users improve their writing, is an important application in NLP. Recently more and more people are learning Chinese, and an automated error detection system can be helpful for the learners. This paper proposes n-gram features, dependency count features, dependency bigram features, and single-character features to determine if a Chinese sentence contains word usage errors, in which a word is written as a wrong form or the word selection is inappropriate. With marking potential errors on the level of sentence segments, typically delimited by punctuation marks, the learner can try to correct the problems without the assistant of a language teacher. Experiments on the HSK corpus show that the classifier combining all sets of features achieves an accuracy of 0.8423. By utilizing certain combination of the sets of features, we can construct a system that favors precision or recall. The best precision we achieve is 0.9536, indicating that our system is reliable and seldom produces misleading results.
This paper explores several aspects together for a fine-grained Chinese discourse analysis. We deal with the issues of ambiguous discourse markers, ambiguous marker linkings, and more than one discourse marker. A universal feature representation is proposed. The pair-once postulation, cross-discourse-unit-first rule and word-pair-marker-first rule select a set of discourse markers from ambiguous linkings. Marker-Sum feature considers total contribution of markers and Marker-Preference feature captures the probability distribution of discourse functions of a representative marker by using preference rule. The HIT Chinese discourse relation treebank (HIT-CDTB) is used to evaluate the proposed models. The 25-way classifier achieves 0.57 micro-averaged F-score.
How-knowledge is indispensable in daily life, but has relatively less quantity and poorer quality than what-knowledge in publicly available knowledge bases. This paper first extracts task-subtask pairs from wikiHow, then mines linguistic patterns from search query logs, and finally applies the mined patterns to extract subtasks to complete given how-to tasks. To evaluate the proposed methodology, we group tasks and the corresponding recommended subtasks into pairs, and evaluate the results automatically and manually. The automatic evaluation shows the accuracy of 0.4494. We also classify the mined patterns based on prepositions and find that the prepositions like “on”, “to”, and “with” have the better performance. The results can be used to accelerate how-knowledge base construction.
This paper addresses the problems of out-of-vocabulary (OOV) words, named entities in particular, in dependency parsing. The OOV words, whose word forms are unknown to the learning-based parser, in a sentence may decrease the parsing performance. To deal with this problem, we propose a sentence rephrasing approach to replace each OOV word in a sentence with a popular word of the same named entity type in the training set, so that the knowledge of the word forms can be used for parsing. The highest-frequency-based rephrasing strategy and the information-retrieval-based rephrasing strategy are explored to select the word to replace, and the Chinese Treebank 6.0 (CTB6) corpus is adopted to evaluate the feasibility of the proposed sentence rephrasing strategies. Experimental results show that rephrasing some specific types of OOV words such as Corporation, Organization, and Competition increases the parsing performances. This methodology can be applied to domain adaptation to deal with OOV problems.
The conversations between posters and repliers in microblogs form a valuable writer-reader emotion corpus. This paper adopts a log relative frequency ratio to investigate the linguistic features which affect emotion transitions, and applies the results to predict writers' and readers' emotions. A 4-class emotion transition predictor, a 2-class writer emotion predictor, and a 2-class reader emotion predictor are proposed and compared.
This paper proposes a method to construct an evaluation dataset from microblogs for the development of recommendation systems. We extract the relationships among three main entities in a recommendation event, i.e., who recommends what to whom. User-to-user friend relationships and user-to-resource interesting relationships in social media and resource-to-metadata descriptions in an external ontology are employed. In the experiments, the resources are restricted to visual entertainment media, movies in particular. A sequence of ground truths varying with time is generated. That reflects the dynamic of real world.
Web provides a large-scale corpus for researchers to study the language usages in real world. Developing a web-scale corpus needs not only a lot of computation resources, but also great efforts to handle the large variations in the web texts, such as character encoding in processing Chinese web texts. In this paper, we aim to develop a web-scale Chinese word N-gram corpus with parts of speech information called NTU PN-Gram corpus using the ClueWeb09 dataset. We focus on the character encoding and some Chinese-specific issues. The statistics about the dataset is reported. We will make the resulting corpus a public available resource to boost the Chinese language processing.
Blog posts containing many personal experiences or perspectives toward specific subjects are useful. Blogs allow readers to interact with bloggers by placing comments on specific blog posts. The comments carry viewpoints of readers toward the targets described in the post, or supportive/non-supportive attitude toward the post. Comment extraction is challenging due to that there does not exist a unique template among all blog service providers. This paper proposes methods to deal with this problem. Firstly, the repetitive patterns and their corresponding blocks are extracted from input posts by pattern identification algorithm. Secondly, three filtering strategies, i.e., tag pattern loop filtering, rule overlap filtering, and longest rule first, are used to remove non-comment blocks. Finally, a comment/non-comment classifier is learned to distinguish comment blocks from non-comment blocks with 14 block-level features and 5 rule-level features. In the experiments, we randomly select 600 blog posts from 12 blog service providers. F-measure, recall, and precision are 0.801, 0.855, and 0.780, respectively, by using all of the three filtering strategies together with some selected features. The application of comment extraction to blog mining is also illustrated. We show how to identify the relevant opinionated objects ― say, opinion holders, opinions, and targets, from posts.
In this paper, we base on the syntactic structural Chinese Treebank corpus, construct the Chinese Opinon Treebank for the research of opinion analysis. We introduce the tagging scheme and develop a tagging tool for constructing this corpus. Annotated samples are described. Information including opinions (yes or no), their polarities (positive, neutral or negative), types (expression, status, or action), is defined and annotated. In addition, five structure trios are introduced according to the linguistic relations between two Chinese words. Four of them that are possibly related to opinions are also annotated in the constructed corpus to provide the linguistic cues. The number of opinion sentences together with the number of their polarities, opinion types, and trio types are calculated. These statistics are compared and discussed. To know the quality of the annotations in this corpus, the kappa values of the annotations are calculated. The substantial agreement between annotations ensures the applicability and reliability of the constructed corpus.
This paper presented an overview of Chinese bi-character words morphological types, and proposed a set of features for machine learning approaches to predict these types based on composite characters information. First, eight morphological types were defined, and 6,500 Chinese bi-character words were annotated with these types. After pre-processing, 6,178 words were selected to construct a corpus named Reduced Set. We analyzed Reduced Set and conducted the inter-annotator agreement test. The average kappa value of 0.67 indicates a substantial agreement. Second, Bi-character words morphological types are considered strongly related with the composite characters parts of speech in this paper, so we proposed a set of features which can simply be extracted from dictionaries to indicate the characters tendency of parts of speech. Finally, we used these features and adopted three machine learning algorithms, SVM, CRF, and Naïve Bayes, to predict the morphological types. On the average, the best algorithm CRF achieved 75% of the annotators performance.
This paper deals with the relationship between weblog content and time. With the proposed temporal mutual information, we analyze the collocations in time dimension, and the interesting collocations related to special events. The temporal mutual information is employed to observe the strength of term-to-term associations over time. An event detection algorithm identifies the collocations that may cause an event in a specific timestamp. An event summarization algorithm retrieves a set of collocations which describe an event. We compare our approach with the approach without considering the time interval. The experimental results demonstrate that the temporal collocations capture the real world semantics and real world events over time.
This paper proposes a named entity (NE) ontology generation engine, called XNE-Tree engine, which produces relational named entities by given a seed. The engine incrementally extracts high co-occurring named entities with the seed by using a common search engine. In each iterative step, the seed will be replaced by its siblings or descendants, which form new seeds. In this way, XNE-Tree engine will build a tree structure with the original seed as a root incrementally. Two seeds, Chinese transliteration names of Nicole Kidman (a famous actress) and Ernest Hemingway (a famous writer), are experimented to evaluate the performance of the XNE-Tree.¡@¡@For test the applicability of the ontology, we employ it to a phoneme-character conversion system, which convert input phoneme syllable sequences to text strings. Total 100 Chinese transliteration names, including 50 person names and 50 location names are used as test data. We derive an ontology composed of 7,642 named entities. The results of phoneme-character conversion show that both the recall rate and the MRR are improved from 0.79 and 0.50 to 0.84 to 0.55, respectively.
Opinion retrieval aims to tell if a document is positive, neutral or negative on a given topic. Opinion extraction further identifies the supportive and the non-supportive evidence of a document. To evaluate the performance of technologies for opinionated tasks, a suitable corpus is necessary. This paper defines the annotations for opinionated materials. Heterogeneous experimental materials are annotated, and the agreements among annotators are analyzed. How human can monitor opinions of the whole is also examined. The corpus can be employed to opinion extraction, opinion summarization, opinion tracking and opinionated question answering.
Due to the explosive growth of the WWW, very large multilingual textual resources have motivated the researches in Cross-Language Information Retrieval and online Web Machine Translation. In this paper, the integration of language translation and text processing system is proposed to build a multilingual information system. A distributed English-Chinese system on WWW is introduced to illustrate how to integrate query translation, search engines, and web translation system. Since July 1997, more than 46,000 users have accessed our system and about 250,000 English web pages have been translated to pages in Chinese or bilingual English-Chinese versions. And the average satisfaction degree of users at document level is 67.47%.
Parsing is often seen as a combinatorial problem. It is not due to the properties of the natural languages, but due to the parsing strategies. This paper investigates a Constrained Grammar extracted from a Treebank and applies it in a non-combinatorial partial parser. This parser is a simpler version of a chunking-and-raising parser. The chunking and raising actions can be done in linear time. The short-term goal of this research is to help the development of a partially bracketed corpus, i.e., a simpler version of a treebank. The long-term goal is to provide high level linguistic constraints for many natural language applications.