Huangzhao Zhang


2024

pdf bib
HiRoPE: Length Extrapolation for Code Models Using Hierarchical Position
Kechi Zhang | Ge Li | Huangzhao Zhang | Zhi Jin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Addressing the limitation of context length in large language models for code-related tasks is the primary focus of this paper. Existing LLMs are constrained by their pre-trained context lengths, leading to performance issues in handling long complex code sequences. Inspired by how human programmers navigate code, we introduce Hierarchical Rotary Position Embedding (HiRoPE), a novel approach that enhances the traditional rotary position embedding into a hierarchical format based on the hierarchical structure of source code. HiRoPE offers easy integration into existing LLMs without extra training costs. Our method is extensively evaluated with various LLMs, demonstrating stable performance in tasks such as language modeling and long code completion. We also introduce a new long code understanding task with real-world code projects, in hopes of promoting further development in this code-related field. Theoretically and experimentally, we find that HiRoPE also addresses the out-of-distribution issue in position encoding. Our HiRoPE significantly expands the context length capabilities of LLMs, enabling inference at lengths exponentially greater than the training length.

2019

pdf bib
Generating Fluent Adversarial Examples for Natural Languages
Huangzhao Zhang | Hao Zhou | Ning Miao | Lei Li
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Efficiently building an adversarial attacker for natural language processing (NLP) tasks is a real challenge. Firstly, as the sentence space is discrete, it is difficult to make small perturbations along the direction of gradients. Secondly, the fluency of the generated examples cannot be guaranteed. In this paper, we propose MHA, which addresses both problems by performing Metropolis-Hastings sampling, whose proposal is designed with the guidance of gradients. Experiments on IMDB and SNLI show that our proposed MHAoutperforms the baseline model on attacking capability. Adversarial training with MHA also leads to better robustness and performance.
Search
Co-authors
Venues