Ibrahim Taha Aksu


2023

pdf bib
Prompter: Zero-shot Adaptive Prefixes for Dialogue State Tracking Domain Adaptation
Ibrahim Taha Aksu | Min-Yen Kan | Nancy Chen
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

A challenge in the Dialogue State Tracking (DST) field is adapting models to new domains without using any supervised data — zero-shot domain adaptation. Parameter-Efficient Transfer Learning (PETL) has the potential to address this problem due to its robustness. However, it has yet to be applied to the zero-shot scenarios, as it is not clear how to apply it unsupervisedly. Our method, Prompter, uses descriptions of target domain slots to generate dynamic prefixes that are concatenated to the key and values at each layer’s self-attention mechanism. This allows for the use of prefix-tuning in zero-shot. Prompter outperforms previous methods on both the MultiWOZ and SGD benchmarks. In generating prefixes, our analyses find that Prompter not only utilizes the semantics of slot descriptions but also how often the slots appear together in conversation. Moreover, Prompter’s gains are due to its improved ability to distinguish ”none”-valued dialogue slots, compared against baselines.

2021

pdf bib
Velocidapter: Task-oriented Dialogue Comprehension Modeling Pairing Synthetic Text Generation with Domain Adaptation
Ibrahim Taha Aksu | Zhengyuan Liu | Min-Yen Kan | Nancy Chen
Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue

We introduce a synthetic dialogue generation framework, Velocidapter, which addresses the corpus availability problem for dialogue comprehension. Velocidapter augments datasets by simulating synthetic conversations for a task-oriented dialogue domain, requiring a small amount of bootstrapping work for each new domain. We evaluate the efficacy of our framework on a task-oriented dialogue comprehension dataset, MRCWOZ, which we curate by annotating questions for slots in the restaurant, taxi, and hotel domains of the MultiWOZ 2.2 dataset (Zang et al., 2020). We run experiments within a low-resource setting, where we pretrain a model on SQuAD, fine-tuning it on either a small original data or on the synthetic data generated by our framework. Velocidapter shows significant improvements using both the transformer-based BERTBase and BiDAF as base models. We further show that the framework is easy to use by novice users and conclude that Velocidapter can greatly help training over task-oriented dialogues, especially for low-resourced emerging domains.