Ikuya Yamada


2024

pdf bib
Arukikata Travelogue Dataset with Geographic Entity Mention, Coreference, and Link Annotation
Shohei Higashiyama | Hiroki Ouchi | Hiroki Teranishi | Hiroyuki Otomo | Yusuke Ide | Aitaro Yamamoto | Hiroyuki Shindo | Yuki Matsuda | Shoko Wakamiya | Naoya Inoue | Ikuya Yamada | Taro Watanabe
Findings of the Association for Computational Linguistics: EACL 2024

Geoparsing is a fundamental technique for analyzing geo-entity information in text, which is useful for geographic applications, e.g., tourist spot recommendation. We focus on document-level geoparsing that considers geographic relatedness among geo-entity mentions and present a Japanese travelogue dataset designed for training and evaluating document-level geoparsing systems. Our dataset comprises 200 travelogue documents with rich geo-entity information: 12,171 mentions, 6,339 coreference clusters, and 2,551 geo-entities linked to geo-database entries.

pdf bib
LEIA: Facilitating Cross-lingual Knowledge Transfer in Language Models with Entity-based Data Augmentation
Ikuya Yamada | Ryokan Ri
Findings of the Association for Computational Linguistics ACL 2024

Adapting English-based large language models (LLMs) to other languages has become increasingly popular due to the efficiency and potential of cross-lingual transfer. However, existing language adaptation methods often overlook the benefits of cross-lingual supervision. In this study, we introduce LEIA, a language adaptation tuning method that utilizes Wikipedia entity names aligned across languages. This method involves augmenting the target language corpus with English entity names and training the model using left-to-right language modeling. We assess LEIA on diverse question answering datasets using 7B-parameter LLMs, demonstrating significant performance gains across various non-English languages.

2022

pdf bib
Proceedings of the Workshop on Multilingual Information Access (MIA)
Akari Asai | Eunsol Choi | Jonathan H. Clark | Junjie Hu | Chia-Hsuan Lee | Jungo Kasai | Shayne Longpre | Ikuya Yamada | Rui Zhang
Proceedings of the Workshop on Multilingual Information Access (MIA)

pdf bib
MIA 2022 Shared Task: Evaluating Cross-lingual Open-Retrieval Question Answering for 16 Diverse Languages
Akari Asai | Shayne Longpre | Jungo Kasai | Chia-Hsuan Lee | Rui Zhang | Junjie Hu | Ikuya Yamada | Jonathan H. Clark | Eunsol Choi
Proceedings of the Workshop on Multilingual Information Access (MIA)

We present the results of the Workshop on Multilingual Information Access (MIA) 2022 Shared Task, evaluating cross-lingual open-retrieval question answering (QA) systems in 16 typologically diverse languages. In this task, we adapted two large-scale cross-lingual open-retrieval QA datasets in 14 typologically diverse languages, and newly annotated open-retrieval QA data in 2 underrepresented languages: Tagalog and Tamil. Four teams submitted their systems. The best constrained system uses entity-aware contextualized representations for document retrieval, thereby achieving an average F1 score of 31.6, which is 4.1 F1 absolute higher than the challenging baseline. The best system obtains particularly significant improvements in Tamil (20.8 F1), whereas most of the other systems yield nearly zero scores. The best unconstrained system achieves 32.2 F1, outperforming our baseline by 4.5 points.

pdf bib
Entity Embedding Completion for Wide-Coverage Entity Disambiguation
Daisuke Oba | Ikuya Yamada | Naoki Yoshinaga | Masashi Toyoda
Findings of the Association for Computational Linguistics: EMNLP 2022

Entity disambiguation (ED) is typically solved by learning to classify a given mention into one of the entities in the model’s entity vocabulary by referring to their embeddings. However, this approach cannot address mentions of entities that are not covered by the entity vocabulary. Aiming to enhance the applicability of ED models, we propose a method of extending a state-of-the-art ED model by dynamically computing embeddings of out-of-vocabulary entities. Specifically, our method computes embeddings from entity descriptions and mention contexts. Experiments with standard benchmark datasets show that the extended model performs comparable to or better than existing models whose entity embeddings are trained for all candidate entities as well as embedding-free models. We release our source code and model checkpoints at https://github.com/studio-ousia/steel.

pdf bib
A Multilingual Bag-of-Entities Model for Zero-Shot Cross-Lingual Text Classification
Sosuke Nishikawa | Ikuya Yamada | Yoshimasa Tsuruoka | Isao Echizen
Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)

We present a multilingual bag-of-entities model that effectively boosts the performance of zero-shot cross-lingual text classification by extending a multilingual pre-trained language model (e.g., M-BERT). It leverages the multilingual nature of Wikidata: entities in multiple languages representing the same concept are defined with a unique identifier. This enables entities described in multiple languages to be represented using shared embeddings. A model trained on entity features in a resource-rich language can thus be directly applied to other languages. Our experimental results on cross-lingual topic classification (using the MLDoc and TED-CLDC datasets) and entity typing (using the SHINRA2020-ML dataset) show that the proposed model consistently outperforms state-of-the-art models.

pdf bib
mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models
Ryokan Ri | Ikuya Yamada | Yoshimasa Tsuruoka
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent studies have shown that multilingual pretrained language models can be effectively improved with cross-lingual alignment information from Wikipedia entities. However, existing methods only exploit entity information in pretraining and do not explicitly use entities in downstream tasks. In this study, we explore the effectiveness of leveraging entity representations for downstream cross-lingual tasks. We train a multilingual language model with 24 languages with entity representations and showthe model consistently outperforms word-based pretrained models in various cross-lingual transfer tasks. We also analyze the model and the key insight is that incorporating entity representations into the input allows us to extract more language-agnostic features. We also evaluate the model with a multilingual cloze prompt task with the mLAMA dataset. We show that entity-based prompt elicits correct factual knowledge more likely than using only word representations.

pdf bib
Global Entity Disambiguation with BERT
Ikuya Yamada | Koki Washio | Hiroyuki Shindo | Yuji Matsumoto
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We propose a global entity disambiguation (ED) model based on BERT. To capture global contextual information for ED, our model treats not only words but also entities as input tokens, and solves the task by sequentially resolving mentions to their referent entities and using resolved entities as inputs at each step. We train the model using a large entity-annotated corpus obtained from Wikipedia. We achieve new state-of-the-art results on five standard ED datasets: AIDA-CoNLL, MSNBC, AQUAINT, ACE2004, and WNED-WIKI. The source code and model checkpoint are available at https://github.com/studio-ousia/luke.

pdf bib
EASE: Entity-Aware Contrastive Learning of Sentence Embedding
Sosuke Nishikawa | Ryokan Ri | Ikuya Yamada | Yoshimasa Tsuruoka | Isao Echizen
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We present EASE, a novel method for learning sentence embeddings via contrastive learning between sentences and their related entities. The advantage of using entity supervision is twofold: (1) entities have been shown to be a strong indicator of text semantics and thus should provide rich training signals for sentence embeddings; (2) entities are defined independently of languages and thus offer useful cross-lingual alignment supervision. We evaluate EASE against other unsupervised models both in monolingual and multilingual settings. We show that EASE exhibits competitive or better performance in English semantic textual similarity (STS) and short text clustering (STC) tasks and it significantly outperforms baseline methods in multilingual settings on a variety of tasks. Our source code, pre-trained models, and newly constructed multi-lingual STC dataset are available at https://github.com/studio-ousia/ease.

2021

pdf bib
Efficient Passage Retrieval with Hashing for Open-domain Question Answering
Ikuya Yamada | Akari Asai | Hannaneh Hajishirzi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Most state-of-the-art open-domain question answering systems use a neural retrieval model to encode passages into continuous vectors and extract them from a knowledge source. However, such retrieval models often require large memory to run because of the massive size of their passage index. In this paper, we introduce Binary Passage Retriever (BPR), a memory-efficient neural retrieval model that integrates a learning-to-hash technique into the state-of-the-art Dense Passage Retriever (DPR) to represent the passage index using compact binary codes rather than continuous vectors. BPR is trained with a multi-task objective over two tasks: efficient candidate generation based on binary codes and accurate reranking based on continuous vectors. Compared with DPR, BPR substantially reduces the memory cost from 65GB to 2GB without a loss of accuracy on two standard open-domain question answering benchmarks: Natural Questions and TriviaQA. Our code and trained models are available at https://github.com/studio-ousia/bpr.

2020

pdf bib
LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention
Ikuya Yamada | Akari Asai | Hiroyuki Shindo | Hideaki Takeda | Yuji Matsumoto
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Entity representations are useful in natural language tasks involving entities. In this paper, we propose new pretrained contextualized representations of words and entities based on the bidirectional transformer. The proposed model treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. Our model is trained using a new pretraining task based on the masked language model of BERT. The task involves predicting randomly masked words and entities in a large entity-annotated corpus retrieved from Wikipedia. We also propose an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer, and considers the types of tokens (words or entities) when computing attention scores. The proposed model achieves impressive empirical performance on a wide range of entity-related tasks. In particular, it obtains state-of-the-art results on five well-known datasets: Open Entity (entity typing), TACRED (relation classification), CoNLL-2003 (named entity recognition), ReCoRD (cloze-style question answering), and SQuAD 1.1 (extractive question answering). Our source code and pretrained representations are available at https://github.com/studio-ousia/luke.

pdf bib
Wikipedia2Vec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from Wikipedia
Ikuya Yamada | Akari Asai | Jin Sakuma | Hiroyuki Shindo | Hideaki Takeda | Yoshiyasu Takefuji | Yuji Matsumoto
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

The embeddings of entities in a large knowledge base (e.g., Wikipedia) are highly beneficial for solving various natural language tasks that involve real world knowledge. In this paper, we present Wikipedia2Vec, a Python-based open-source tool for learning the embeddings of words and entities from Wikipedia. The proposed tool enables users to learn the embeddings efficiently by issuing a single command with a Wikipedia dump file as an argument. We also introduce a web-based demonstration of our tool that allows users to visualize and explore the learned embeddings. In our experiments, our tool achieved a state-of-the-art result on the KORE entity relatedness dataset, and competitive results on various standard benchmark datasets. Furthermore, our tool has been used as a key component in various recent studies. We publicize the source code, demonstration, and the pretrained embeddings for 12 languages at https://wikipedia2vec.github.io/.

2019

pdf bib
Neural Attentive Bag-of-Entities Model for Text Classification
Ikuya Yamada | Hiroyuki Shindo
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

This study proposes a Neural Attentive Bag-of-Entities model, which is a neural network model that performs text classification using entities in a knowledge base. Entities provide unambiguous and relevant semantic signals that are beneficial for text classification. We combine simple high-recall entity detection based on a dictionary, to detect entities in a document, with a novel neural attention mechanism that enables the model to focus on a small number of unambiguous and relevant entities. We tested the effectiveness of our model using two standard text classification datasets (i.e., the 20 Newsgroups and R8 datasets) and a popular factoid question answering dataset based on a trivia quiz game. As a result, our model achieved state-of-the-art results on all datasets. The source code of the proposed model is available online at https://github.com/wikipedia2vec/wikipedia2vec.

pdf bib
Trick Me If You Can: Human-in-the-Loop Generation of Adversarial Examples for Question Answering
Eric Wallace | Pedro Rodriguez | Shi Feng | Ikuya Yamada | Jordan Boyd-Graber
Transactions of the Association for Computational Linguistics, Volume 7

Adversarial evaluation stress-tests a model’s understanding of natural language. Because past approaches expose superficial patterns, the resulting adversarial examples are limited in complexity and diversity. We propose human- in-the-loop adversarial generation, where human authors are guided to break models. We aid the authors with interpretations of model predictions through an interactive user interface. We apply this generation framework to a question answering task called Quizbowl, where trivia enthusiasts craft adversarial questions. The resulting questions are validated via live human–computer matches: Although the questions appear ordinary to humans, they systematically stump neural and information retrieval models. The adversarial questions cover diverse phenomena from multi-hop reasoning to entity type distractors, exposing open challenges in robust question answering.

2018

pdf bib
Representation Learning of Entities and Documents from Knowledge Base Descriptions
Ikuya Yamada | Hiroyuki Shindo | Yoshiyasu Takefuji
Proceedings of the 27th International Conference on Computational Linguistics

In this paper, we describe TextEnt, a neural network model that learns distributed representations of entities and documents directly from a knowledge base (KB). Given a document in a KB consisting of words and entity annotations, we train our model to predict the entity that the document describes and map the document and its target entity close to each other in a continuous vector space. Our model is trained using a large number of documents extracted from Wikipedia. The performance of the proposed model is evaluated using two tasks, namely fine-grained entity typing and multiclass text classification. The results demonstrate that our model achieves state-of-the-art performance on both tasks. The code and the trained representations are made available online for further academic research.

2017

pdf bib
Learning Distributed Representations of Texts and Entities from Knowledge Base
Ikuya Yamada | Hiroyuki Shindo | Hideaki Takeda | Yoshiyasu Takefuji
Transactions of the Association for Computational Linguistics, Volume 5

We describe a neural network model that jointly learns distributed representations of texts and knowledge base (KB) entities. Given a text in the KB, we train our proposed model to predict entities that are relevant to the text. Our model is designed to be generic with the ability to address various NLP tasks with ease. We train the model using a large corpus of texts and their entity annotations extracted from Wikipedia. We evaluated the model on three important NLP tasks (i.e., sentence textual similarity, entity linking, and factoid question answering) involving both unsupervised and supervised settings. As a result, we achieved state-of-the-art results on all three of these tasks. Our code and trained models are publicly available for further academic research.

pdf bib
Named Entity Disambiguation for Noisy Text
Yotam Eshel | Noam Cohen | Kira Radinsky | Shaul Markovitch | Ikuya Yamada | Omer Levy
Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)

We address the task of Named Entity Disambiguation (NED) for noisy text. We present WikilinksNED, a large-scale NED dataset of text fragments from the web, which is significantly noisier and more challenging than existing news-based datasets. To capture the limited and noisy local context surrounding each mention, we design a neural model and train it with a novel method for sampling informative negative examples. We also describe a new way of initializing word and entity embeddings that significantly improves performance. Our model significantly outperforms existing state-of-the-art methods on WikilinksNED while achieving comparable performance on a smaller newswire dataset.

pdf bib
Segment-Level Neural Conditional Random Fields for Named Entity Recognition
Motoki Sato | Hiroyuki Shindo | Ikuya Yamada | Yuji Matsumoto
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

We present Segment-level Neural CRF, which combines neural networks with a linear chain CRF for segment-level sequence modeling tasks such as named entity recognition (NER) and syntactic chunking. Our segment-level CRF can consider higher-order label dependencies compared with conventional word-level CRF. Since it is difficult to consider all possible variable length segments, our method uses segment lattice constructed from the word-level tagging model to reduce the search space. Performing experiments on NER and chunking, we demonstrate that our method outperforms conventional word-level CRF with neural networks.

2016

pdf bib
Joint Learning of the Embedding of Words and Entities for Named Entity Disambiguation
Ikuya Yamada | Hiroyuki Shindo | Hideaki Takeda | Yoshiyasu Takefuji
Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning

2015

pdf bib
Enhancing Named Entity Recognition in Twitter Messages Using Entity Linking
Ikuya Yamada | Hideaki Takeda | Yoshiyasu Takefuji
Proceedings of the Workshop on Noisy User-generated Text