Isil Dillig
2021
Optimal Neural Program Synthesis from Multimodal Specifications
Xi Ye
|
Qiaochu Chen
|
Isil Dillig
|
Greg Durrett
Findings of the Association for Computational Linguistics: EMNLP 2021
Multimodal program synthesis, which leverages different types of user input to synthesize a desired program, is an attractive way to scale program synthesis to challenging settings; however, it requires integrating noisy signals from the user, like natural language, with hard constraints on the program’s behavior. This paper proposes an optimal neural synthesis approach where the goal is to find a program that satisfies user-provided constraints while also maximizing the program’s score with respect to a neural model. Specifically, we focus on multimodal synthesis tasks in which the user intent is expressed using a combination of natural language (NL) and input-output examples. At the core of our method is a top-down recurrent neural model that places distributions over abstract syntax trees conditioned on the NL input. This model not only allows for efficient search over the space of syntactically valid programs, but it allows us to leverage automated program analysis techniques for pruning the search space based on infeasibility of partial programs with respect to the user’s constraints. The experimental results on a multimodal synthesis dataset (StructuredRegex) show that our method substantially outperforms prior state-of-the-art techniques in terms of accuracy and efficiency, and finds model-optimal programs more frequently.
2020
Sketch-Driven Regular Expression Generation from Natural Language and Examples
Xi Ye
|
Qiaochu Chen
|
Xinyu Wang
|
Isil Dillig
|
Greg Durrett
Transactions of the Association for Computational Linguistics, Volume 8
Recent systems for converting natural language descriptions into regular expressions (regexes) have achieved some success, but typically deal with short, formulaic text and can only produce simple regexes. Real-world regexes are complex, hard to describe with brief sentences, and sometimes require examples to fully convey the user’s intent. We present a framework for regex synthesis in this setting where both natural language (NL) and examples are available. First, a semantic parser (either grammar-based or neural) maps the natural language description into an intermediate sketch, which is an incomplete regex containing holes to denote missing components. Then a program synthesizer searches over the regex space defined by the sketch and finds a regex that is consistent with the given string examples. Our semantic parser can be trained purely from weak supervision based on correctness of the synthesized regex, or it can leverage heuristically derived sketches. We evaluate on two prior datasets (Kushman and Barzilay 2013; Locascio et al. 2016) and a real-world dataset from Stack Overflow. Our system achieves state-of-the-art performance on the prior datasets and solves 57% of the real-world dataset, which existing neural systems completely fail on.1
Benchmarking Multimodal Regex Synthesis with Complex Structures
Xi Ye
|
Qiaochu Chen
|
Isil Dillig
|
Greg Durrett
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
Existing datasets for regular expression (regex) generation from natural language are limited in complexity; compared to regex tasks that users post on StackOverflow, the regexes in these datasets are simple, and the language used to describe them is not diverse. We introduce StructuredRegex, a new regex synthesis dataset differing from prior ones in three aspects. First, to obtain structurally complex and realistic regexes, we generate the regexes using a probabilistic grammar with pre-defined macros observed from real-world StackOverflow posts. Second, to obtain linguistically diverse natural language descriptions, we show crowdworkers abstract depictions of the underlying regex and ask them to describe the pattern they see, rather than having them paraphrase synthetic language. Third, we augment each regex example with a collection of strings that are and are not matched by the ground truth regex, similar to how real users give examples. Our quantitative and qualitative analysis demonstrates the advantages of StructuredRegex over prior datasets. Further experimental results using various multimodal synthesis techniques highlight the challenge presented by our dataset, including non-local constraints and multi-modal inputs.
Search