Answering factual questions from heterogenous sources, such as graphs and text, is a key capacity of intelligent systems. Current approaches either (i) perform question answering over text and structured sources as separate pipelines followed by a merge step or (ii) provide an early integration, giving up the strengths of particular information sources. To solve this problem, we present “HumanIQ”, a method that teaches language models to dynamically combine retrieved information by imitating how humans use retrieval tools. Our approach couples a generic method for gathering human demonstrations of tool use with adaptive few-shot learning for tool augmented models. We show that HumanIQ confers significant benefits, including i) reducing the error rate of our strongest baseline (GPT-4) by over 50% across 3 benchmarks, (ii) improving human preference over responses from vanilla GPT-4 (45.3% wins, 46.7% ties, 8.0% loss), and (iii) outperforming numerous task-specific baselines.
Leveraging external knowledge is crucial for achieving high performance in knowledge-intensive tasks, such as question answering. The retrieve-and-read approach is widely adopted for integrating external knowledge into a language model. However, this approach suffers from increased computational cost and latency due to the long context length, which grows proportionally with the number of retrieved knowledge. Furthermore, existing retrieval-augmented models typically retrieve information from a single type of knowledge source, limiting their scalability to diverse knowledge sources with varying structures. In this work, we introduce an efficient memory-augmented transformer called MATTER, designed to retrieve relevant knowledge from multiple heterogeneous knowledge sources. Specifically, our model retrieves and reads from both unstructured sources (paragraphs) and semi-structured sources (QA pairs) in the form of fixed-length neural memories. We demonstrate that our model outperforms existing efficient retrieval-augmented models on popular QA benchmarks in terms of both accuracy and speed. Furthermore, MATTER achieves competitive results compared to conventional read-and-retrieve models while having 100x throughput during inference.
Large language models (LLMs) tend to inadequately integrate input context during text generation, relying excessively on encoded prior knowledge in model parameters, potentially resulting in generated text with factual inconsistencies or contextually unfaithful content. LLMs utilize two primary knowledge sources: 1) prior (parametric) knowledge from pretraining, and 2) contextual (non-parametric) knowledge from input prompts. The study addresses the open question of how LLMs effectively balance these knowledge sources during the generation process, specifically in the context of open-domain question answering. To address this issue, we introduce a novel approach integrating contrastive decoding with adversarial irrelevant passages as negative samples to enhance robust context grounding during generation. Notably, our method operates at inference time without requiring further training. We conduct comprehensive experiments to demonstrate its applicability and effectiveness, providing empirical evidence showcasing its superiority over existing methodologies.
Extracting structured information from unstructured text is critical for many downstream NLP applications and is traditionally achieved by closed information extraction (cIE). However, existing approaches for cIE suffer from two limitations: (i) they are often pipelines which makes them prone to error propagation, and/or (ii) they are restricted to sentence level which prevents them from capturing long-range dependencies and results in expensive inference time. We address these limitations by proposing REXEL, a highly efficient and accurate model for the joint task of document level cIE (DocIE). REXEL performs mention detection, entity typing, entity disambiguation, coreference resolution and document-level relation classification in a single forward pass to yield facts fully linked to a reference knowledge graph. It is on average 11 times faster than competitive existing approaches in a similar setting and performs competitively both when optimised for any of the individual sub-task and a variety of combinations of different joint tasks, surpassing the baselines by an average of more than 6 F1 points. The combination of speed and accuracy makes REXEL an accurate cost-efficient system for extracting structured information at web-scale. We also release an extension of the DocRED dataset to enable benchmarking of future work on DocIE, which will be available at https://github.com/amazon-science/e2e-docie.
Knowledge graph embedding (KGE) models provide a low-dimensional representation of knowledge graphs in continuous vector spaces. This representation learning enables different downstream AI tasks such as link prediction for graph completion. However, most embedding models are only designed considering the algebra and geometry of the entity embedding space, the algebra of the relation embedding space, and the interaction between relation and entity embeddings. Neglecting the geometry of relation embedding limits the optimization of entity and relation distribution leading to suboptimal performance of knowledge graph completion. To address this issue, we propose a new perspective in the design of KGEs by looking into the geometry of relation embedding space. The proposed method and its variants are developed on top of an existing framework, RotatE, from which we leverage the geometry of the relation embeddings by mutating the unit circle to an ellipse, and further generalize it with the concept of a butterfly curve, consecutively. Besides the theoretical abilities of the model in preserving topological and relational patterns, the experiments on the WN18RR, FB15K-237 and YouTube benchmarks showed that this new family of KGEs can challenge or outperform state-of-the-art models.
There has been a surge of interest in utilizing Knowledge Graphs (KGs) for various natural language processing/understanding tasks. The conventional mechanism to retrieve facts in KGs usually involves three steps: entity span detection, entity disambiguation, and relation classification. However, this approach requires additional labels for training each of the three subcomponents in addition to pairs of input texts and facts, and also may accumulate errors propagated from failures in previous steps. To tackle these limitations, we propose a simple knowledge retrieval framework, which directly retrieves facts from the KGs given the input text based on their representational similarities, which we refer to as Direct Fact Retrieval (DiFaR). Specifically, we first embed all facts in KGs onto a dense embedding space by using a language model trained by only pairs of input texts and facts, and then provide the nearest facts in response to the input text. Since the fact, consisting of only two entities and one relation, has little context to encode, we propose to further refine ranks of top-k retrieved facts with a reranker that contextualizes the input text and the fact jointly. We validate our DiFaR framework on multiple fact retrieval tasks, showing that it significantly outperforms relevant baselines that use the three-step approach.
Knowledge graphs mostly exhibit a mixture of branching relations, e.g., hasFriend, and complex structures, e.g., hierarchy and loop. Most knowledge graph embeddings have problems expressing them, because they model a specific relation r from a head h to tails by starting at the node embedding of h and transitioning deterministically to exactly one other point in the embedding space. We overcome this issue in our novel framework ItCAREToE by modeling relations between nodes by relation-specific, stochastic transitions. Our framework is based on stochastic ItCARETo processes, which operate on low-dimensional manifolds. ItCAREToE is highly expressive and generic subsuming various state-of-the-art models operating on different, also non-Euclidean, manifolds. Experimental results show the superiority of ItCAREToE over other deterministic embedding models with regard to the KG completion task.
Recent advancements in Large language models (LLMs) have enabled them to hold free form conversations over multiple turns, but they exhibit a tendency to make unfounded and incorrect statements, commonly known as hallucinations. In particular, LLMs hallucinate frequently when given invalid questions, i.e. ones with incorrect assumptions. The most common approach to evaluate LLMs on hallucinations is to test them on Question Answering (QA) test sets such as TruthfulQA. However, LLMs are increasingly pretrained on massive text corpora scraped from the Internet, which may inevitably expose these test sets to the model during training, leading eventually to an overestimation of model performances on these test sets. In this work, we present an alternative framework to address this risk and to foster further research towards making LLMs robust against invalid questions. We name our framework INVITE: a testbed of automatically generated INValId questions to evaluaTE large language models for hallucinations. In each instantiation, our framework is set up to create a fresh batch of invalid questions by distorting valid facts in which subjects or objects are replaced by similar entities. We evaluate several state of the art LLMs against a testset generated by our framework and highlight its capacity to trigger hallucinations in these models.
End-to-end multilingual entity linking (MEL) is concerned with identifying multilingual entity mentions and their corresponding entity IDs in a knowledge base. Existing works assumed that entity mentions were given and skipped the entity mention detection step due to a lack of high-quality multilingual training corpora. To overcome this limitation, we propose mReFinED, the first end-to-end multilingual entity linking. Additionally, we propose a bootstrapping mention detection framework that enhances the quality of training corpora. Our experimental results demonstrated that mReFinED outperformed the best existing work in the end-to-end MEL task while being 44 times faster.
Evaluating Natural Language Generation (NLG) systems is a challenging task. Firstly, the metric should ensure that the generated hypothesis reflects the reference’s semantics. Secondly, it should consider the grammatical quality of the generated sentence. Thirdly, it should be robust enough to handle various surface forms of the generated sentence. Thus, an effective evaluation metric has to be multifaceted. In this paper, we propose an automatic evaluation metric incorporating several core aspects of natural language understanding (language competence, syntactic and semantic variation). Our proposed metric, RoMe, is trained on language features such as semantic similarity combined with tree edit distance and grammatical acceptability, using a self-supervised neural network to assess the overall quality of the generated sentence. Moreover, we perform an extensive robustness analysis of the state-of-the-art methods and RoMe. Empirical results suggest that RoMe has a stronger correlation to human judgment over state-of-the-art metrics in evaluating system-generated sentences across several NLG tasks.
Task-oriented dialogue generation is challenging since the underlying knowledge is often dynamic and effectively incorporating knowledge into the learning process is hard. It is particularly challenging to generate both human-like and informative responses in this setting. Recent research primarily focused on various knowledge distillation methods where the underlying relationship between the facts in a knowledge base is not effectively captured. In this paper, we go one step further and demonstrate how the structural information of a knowledge graph can improve the system’s inference capabilities. Specifically, we propose DialoKG, a novel task-oriented dialogue system that effectively incorporates knowledge into a language model. Our proposed system views relational knowledge as a knowledge graph and introduces (1) a structure-aware knowledge embedding technique, and (2) a knowledge graph-weighted attention masking strategy to facilitate the system selecting relevant information during the dialogue generation. An empirical evaluation demonstrates the effectiveness of DialoKG over state-of-the-art methods on several standard benchmark datasets.
To improve the coherence and knowledge retrieval capabilities of non-task-oriented dialogue systems, recent Transformer-based models aim to integrate fixed background context. This often comes in the form of knowledge graphs, and the integration is done by creating pseudo utterances through paraphrasing knowledge triples, added into the accumulated dialogue context. However, the context length is fixed in these architectures, which restricts how much background or dialogue context can be kept. In this work, we propose a more concise encoding for background context structured in the form of knowledge graphs, by expressing the graph connections through restrictions on the attention weights. The results of our human evaluation show that this encoding reduces space requirements without negative effects on the precision of reproduction of knowledge and perceived consistency. Further, models trained with our proposed context encoding generate dialogues that are judged to be more comprehensive and interesting.
Representation learning approaches for knowledge graphs have been mostly designed for static data. However, many knowledge graphs involve evolving data, e.g., the fact (The President of the United States is Barack Obama) is valid only from 2009 to 2017. This introduces important challenges for knowledge representation learning since the knowledge graphs change over time. In this paper, we present a novel time-aware knowledge graph embebdding approach, TeLM, which performs 4th-order tensor factorization of a Temporal knowledge graph using a Linear temporal regularizer and Multivector embeddings. Moreover, we investigate the effect of the temporal dataset’s time granularity on temporal knowledge graph completion. Experimental results demonstrate that our proposed models trained with the linear temporal regularizer achieve the state-of-the-art performances on link prediction over four well-established temporal knowledge graph completion benchmarks.
In this paper, we propose CHOLAN, a modular approach to target end-to-end entity linking (EL) over knowledge bases. CHOLAN consists of a pipeline of two transformer-based models integrated sequentially to accomplish the EL task. The first transformer model identifies surface forms (entity mentions) in a given text. For each mention, a second transformer model is employed to classify the target entity among a predefined candidates list. The latter transformer is fed by an enriched context captured from the sentence (i.e. local context), and entity description gained from Wikipedia. Such external contexts have not been used in state of the art EL approaches. Our empirical study was conducted on two well-known knowledge bases (i.e., Wikidata and Wikipedia). The empirical results suggest that CHOLAN outperforms state-of-the-art approaches on standard datasets such as CoNLL-AIDA, MSNBC, AQUAINT, ACE2004, and T-REx.
This paper addresses the task of (complex) conversational question answering over a knowledge graph. For this task, we propose LASAGNE (muLti-task semAntic parSing with trAnsformer and Graph atteNtion nEworks). It is the first approach, which employs a transformer architecture extended with Graph Attention Networks for multi-task neural semantic parsing. LASAGNE uses a transformer model for generating the base logical forms, while the Graph Attention model is used to exploit correlations between (entity) types and predicates to produce node representations. LASAGNE also includes a novel entity recognition module which detects, links, and ranks all relevant entities in the question context. We evaluate LASAGNE on a standard dataset for complex sequential question answering, on which it outperforms existing baselines averaged on all question types. Specifically, we show that LASAGNE improves the F1-score on eight out of ten question types; in some cases, the increase is more than 20% compared to state of the art (SotA).
The automatic evaluation of open-domain dialogues remains a largely unsolved challenge. Despite the abundance of work done in the field, human judges have to evaluate dialogues’ quality. As a consequence, performing such evaluations at scale is usually expensive. This work investigates using a deep-learning model trained on the General Language Understanding Evaluation (GLUE) benchmark to serve as a quality indication of open-domain dialogues. The aim is to use the various GLUE tasks as different perspectives on judging the quality of conversation, thus reducing the need for additional training data or responses that serve as quality references. Due to this nature, the method can infer various quality metrics and can derive a component-based overall score. We achieve statistically significant correlation coefficients of up to 0.7.
Entity alignment aims to identify equivalent entity pairs between different knowledge graphs (KGs). Recently, the availability of temporal KGs (TKGs) that contain time information created the need for reasoning over time in such TKGs. Existing embedding-based entity alignment approaches disregard time information that commonly exists in many large-scale KGs, leaving much room for improvement. In this paper, we focus on the task of aligning entity pairs between TKGs and propose a novel Time-aware Entity Alignment approach based on Graph Neural Networks (TEA-GNN). We embed entities, relations and timestamps of different KGs into a vector space and use GNNs to learn entity representations. To incorporate both relation and time information into the GNN structure of our model, we use a self-attention mechanism which assigns different weights to different nodes with orthogonal transformation matrices computed from embeddings of the relevant relations and timestamps in a neighborhood. Experimental results on multiple real-world TKG datasets show that our method significantly outperforms the state-of-the-art methods due to the inclusion of time information.
Knowledge Graph Embeddings (KGEs) have shown promising performance on link prediction tasks by mapping the entities and relations from a knowledge graph into a geometric space. The capability of KGEs in preserving graph characteristics including structural aspects and semantics, highly depends on the design of their score function, as well as the inherited abilities from the underlying geometry. Many KGEs use the Euclidean geometry which renders them incapable of preserving complex structures and consequently causes wrong inferences by the models. To address this problem, we propose a neuro differential KGE that embeds nodes of a KG on the trajectories of Ordinary Differential Equations (ODEs). To this end, we represent each relation (edge) in a KG as a vector field on several manifolds. We specifically parameterize ODEs by a neural network to represent complex manifolds and complex vector fields on the manifolds. Therefore, the underlying embedding space is capable to assume the shape of various geometric forms to encode heterogeneous subgraphs. Experiments on synthetic and benchmark datasets using state-of-the-art KGE models justify the ODE trajectories as a means to enable structure preservation and consequently avoiding wrong inferences.
Knowledge graph (KG) embedding aims at embedding entities and relations in a KG into a low dimensional latent representation space. Existing KG embedding approaches model entities and relations in a KG by utilizing real-valued , complex-valued, or hypercomplex-valued (Quaternion or Octonion) representations, all of which are subsumed into a geometric algebra. In this work, we introduce a novel geometric algebra-based KG embedding framework, GeomE, which utilizes multivector representations and the geometric product to model entities and relations. Our framework subsumes several state-of-the-art KG embedding approaches and is advantageous with its ability of modeling various key relation patterns, including (anti-)symmetry, inversion and composition, rich expressiveness with higher degree of freedom as well as good generalization capacity. Experimental results on multiple benchmark knowledge graphs show that the proposed approach outperforms existing state-of-the-art models for link prediction.
In the last few years, there has been a surge of interest in learning representations of entities and relations in knowledge graph (KG). However, the recent availability of temporal knowledge graphs (TKGs) that contain time information for each fact created the need for reasoning over time in such TKGs. In this regard, we present a new approach of TKG embedding, TeRo, which defines the temporal evolution of entity embedding as a rotation from the initial time to the current time in the complex vector space. Specially, for facts involving time intervals, each relation is represented as a pair of dual complex embeddings to handle the beginning and the end of the relation, respectively. We show our proposed model overcomes the limitations of the existing KG embedding models and TKG embedding models and has the ability of learning and inferring various relation patterns over time. Experimental results on three different TKGs show that TeRo significantly outperforms existing state-of-the-art models for link prediction. In addition, we analyze the effect of time granularity on link prediction over TKGs, which as far as we know has not been investigated in previous literature.
Computer-based systems for communication with humans are a cornerstone of AI research since the 1950s. So far, the most effective way to assess the quality of the dialogues produced by these systems is to use resource-intensive manual labor instead of automated means. In this work, we investigate whether language models (LM) based on transformer neural networks can indicate the quality of a conversation. In a general sense, language models are methods that learn to predict one or more words based on an already given context. Due to their unsupervised nature, they are candidates for efficient, automatic indication of dialogue quality. We demonstrate that human evaluators have a positive correlation between the output of the language models and scores. We also provide some insights into their behavior and inner-working in a conversational context.
Dialogue systems for interaction with humans have been enjoying increased popularity in the research and industry fields. To this day, the best way to estimate their success is through means of human evaluation and not automated approaches, despite the abundance of work done in the field. In this paper, we investigate the effectiveness of perceiving dialogue evaluation as an anomaly detection task. The paper looks into four dialogue modeling approaches and how their objective functions correlate with human annotation scores. A high-level perspective exhibits negative results. However, a more in-depth look shows some potential for using anomaly detection for evaluating dialogues.
Hyper-relational knowledge graphs (KGs) (e.g., Wikidata) enable associating additional key-value pairs along with the main triple to disambiguate, or restrict the validity of a fact. In this work, we propose a message passing based graph encoder - StarE capable of modeling such hyper-relational KGs. Unlike existing approaches, StarE can encode an arbitrary number of additional information (qualifiers) along with the main triple while keeping the semantic roles of qualifiers and triples intact. We also demonstrate that existing benchmarks for evaluating link prediction (LP) performance on hyper-relational KGs suffer from fundamental flaws and thus develop a new Wikidata-based dataset - WD50K. Our experiments demonstrate that StarE based LP model outperforms existing approaches across multiple benchmarks. We also confirm that leveraging qualifiers is vital for link prediction with gains up to 25 MRR points compared to triple-based representations.
Short texts challenge NLP tasks such as named entity recognition, disambiguation, linking and relation inference because they do not provide sufficient context or are partially malformed (e.g. wrt. capitalization, long tail entities, implicit relations). In this work, we present the Falcon approach which effectively maps entities and relations within a short text to its mentions of a background knowledge graph. Falcon overcomes the challenges of short text using a light-weight linguistic approach relying on a background knowledge graph. Falcon performs joint entity and relation linking of a short text by leveraging several fundamental principles of English morphology (e.g. compounding, headword identification) and utilizes an extended knowledge graph created by merging entities and relations from various knowledge sources. It uses the context of entities for finding relations and does not require training data. Our empirical study using several standard benchmarks and datasets show that Falcon significantly outperforms state-of-the-art entity and relation linking for short text query inventories.
Building systems that can communicate with humans is a core problem in Artificial Intelligence. This work proposes a novel neural network architecture for response selection in an end-to-end multi-turn conversational dialogue setting. The architecture applies context level attention and incorporates additional external knowledge provided by descriptions of domain-specific words. It uses a bi-directional Gated Recurrent Unit (GRU) for encoding context and responses and learns to attend over the context words given the latent response representation and vice versa. In addition, it incorporates external domain specific information using another GRU for encoding the domain keyword descriptions. This allows better representation of domain-specific keywords in responses and hence improves the overall performance. Experimental results show that our model outperforms all other state-of-the-art methods for response selection in multi-turn conversations.
With the growth of the internet, the number of fake-news online has been proliferating every year. The consequences of such phenomena are manifold, ranging from lousy decision-making process to bullying and violence episodes. Therefore, fact-checking algorithms became a valuable asset. To this aim, an important step to detect fake-news is to have access to a credibility score for a given information source. However, most of the widely used Web indicators have either been shutdown to the public (e.g., Google PageRank) or are not free for use (Alexa Rank). Further existing databases are short-manually curated lists of online sources, which do not scale. Finally, most of the research on the topic is theoretical-based or explore confidential data in a restricted simulation environment. In this paper we explore current research, highlight the challenges and propose solutions to tackle the problem of classifying websites into a credibility scale. The proposed model automatically extracts source reputation cues and computes a credibility factor, providing valuable insights which can help in belittling dubious and confirming trustful unknown websites. Experimental results outperform state of the art in the 2-classes and 5-classes setting.
In the last couple of years the amount of structured open government data has increased significantly. Already now, citizens are able to leverage the advantages of open data through increased transparency and better opportunities to take part in governmental decision making processes. Our approach increases the interoperability of existing but distributed open governmental datasets by converting them to the RDF-based NLP Interchange Format (NIF). Furthermore, we integrate the converted data into a geodata store and present a user interface for querying this data via a keyword-based search. The language resource generated in this project is publicly available for download and also via a dedicated SPARQL endpoint.