Jieyu Zhang


2023

pdf bib
Cold-Start Data Selection for Better Few-shot Language Model Fine-tuning: A Prompt-based Uncertainty Propagation Approach
Yue Yu | Rongzhi Zhang | Ran Xu | Jieyu Zhang | Jiaming Shen | Chao Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present PATRON, a prompt-based data selection method for pre-trained language model fine-tuning under cold-start scenarios, i.e., no initial labeled data are available. In PATRON, we design (1) a prompt-based uncertainty propagation approach to estimate the importance of data points and (2) a partition-then-rewrite (PTR) strategy to promote sample diversity when querying for annotations. Experiments on six text classification datasets show that PATRON outperforms the strongest cold-start data selection baselines by up to 6.9%. Besides, with 128 labels only, PATRON achieves 91.0% and 92.1% of the fully supervised performance based on vanilla fine-tuning and prompt-based learning respectively. Our implementation of PATRON will be published upon acceptance.

2022

pdf bib
AcTune: Uncertainty-Based Active Self-Training for Active Fine-Tuning of Pretrained Language Models
Yue Yu | Lingkai Kong | Jieyu Zhang | Rongzhi Zhang | Chao Zhang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Although fine-tuning pre-trained language models (PLMs) renders strong performance in many NLP tasks, it relies on excessive labeled data. Recently, researchers have resorted to active fine-tuning for enhancing the label efficiency of PLM fine-tuning, but existing methods of this type usually ignore the potential of unlabeled data. We develop AcTune, a new framework that improves the label efficiency of active PLM fine-tuning by unleashing the power of unlabeled data via self-training. AcTune switches between data annotation and model self-training based on uncertainty: the unlabeled samples of high-uncertainty are selected for annotation, while the ones from low-uncertainty regions are used for model self-training. Additionally, we design (1) a region-aware sampling strategy to avoid redundant samples when querying annotations and (2) a momentum-based memory bank to dynamically aggregate the model’s pseudo labels to suppress label noise in self-training. Experiments on 6 text classification datasets show that AcTune outperforms the strongest active learning and self-training baselines and improves the label efficiency of PLM fine-tuning by 56.2% on average. Our implementation is available at https://github.com/yueyu1030/actune.

pdf bib
Adaptive Ranking-based Sample Selection for Weakly Supervised Class-imbalanced Text Classification
Linxin Song | Jieyu Zhang | Tianxiang Yang | Masayuki Goto
Findings of the Association for Computational Linguistics: EMNLP 2022

To obtain a large amount of training labels inexpensively, researchers have recently adopted the weak supervision (WS) paradigm, which leverages labeling rules to synthesize training labels rather than using individual annotations to achieve competitive results for natural language processing (NLP) tasks. However, data imbalance is often overlooked in applying the WS paradigm, despite being a common issue in a variety of NLP tasks. To address this challenge, we propose Adaptive Ranking-based Sample Selection (ARS2), a model-agnostic framework to alleviate the data imbalance issue in the WS paradigm. Specifically, it calculates a probabilistic margin score based on the output of the current model to measure and rank the cleanliness of each data point. Then, the ranked data are sampled based on both class-wise and rule-aware ranking. In particular, the two sample strategies corresponds to our motivations: (1) to train the model with balanced data batches to reduce the data imbalance issue and (2) to exploit the expertise of each labeling rule for collecting clean samples. Experiments on four text classification datasets with four different imbalance ratios show that ARS2 outperformed the state-of-the-art imbalanced learning and WS methods, leading to a 2%-57.8% improvement on their F1-score.