Multimodal large language models (MLLMs) are flourishing, but mainly focus on images with less attention than videos, especially in sub-fields such as prompt engineering, video chain-of-though (CoT), and instruction tuning on videos. Therefore, we try to explore the collection of CoT datasets in videos to lead to video OpenQA and improve the reasoning ability of MLLMs. Unfortunately, making such video CoT datasets is not an easy task. Given that human annotation is too cumbersome and expensive, while machine-generated is not reliable due to the hallucination issue, we develop an automatic annotation tool that combines machine and human experts, under the active learning paradigm. Active learning is an interactive strategy between the model and human experts, in this way, the workload of human labeling can be reduced and the quality of the dataset can be guaranteed. With the help of the automatic annotation tool, we strive to contribute three datasets, namely VideoCoT, TopicQA, TopicCoT. Furthermore, we propose a simple but effective benchmark based on the collected datasets, which exploits CoT to maximize the complex reasoning capabilities of MLLMs. Extensive experiments demonstrate the effectiveness our solution, and we will release our source codes and datasets to facilitate the research community.
Recently, instruction-following audio-language models have received broad attention for human-audio interaction. However, the absence of benchmarks capable of evaluating audio-centric interaction capabilities has impeded advancements in this field. Previous models primarily focus on assessing different fundamental tasks, such as automatic speech recognition, and lack an assessment of the open-ended generative capabilities centered around audio. Thus, it is challenging to track the progression in the Large Audio-Language Models (LALMs) domain and to provide guidance for future improvement.In this paper, we introduce AIR-Bench (Audio InstRuction Benchmark), the first benchmark designed to evaluate the ability of LALMs to understand various types of audio signals (including human speech, natural sounds, and music), and furthermore, to interact with humans in the textual format. AIR-Bench encompasses two dimensions: foundation and chat benchmarks. The former consists of 19 tasks with approximately 19k single-choice questions, intending to inspect the basic single-task ability of LALMs. The latter one contains 2k instances of open-ended question-and-answer data, directly assessing the comprehension of the model on complex audio and its capacity to follow instructions. Both benchmarks require the model to generate hypotheses directly. We design a unified framework that leverages advanced language models, such as GPT-4, to evaluate the scores of generated hypotheses given the meta-information of the audio. Experimental results demonstrate a high level of consistency between GPT-4-based evaluation and human evaluation. By revealing the limitations of existing LALMs through evaluation results, AIR-Bench can provide insights into the direction of future research. Dataset and evaluation code are available at https://github.com/OFA-Sys/AIR-Bench.
Minimum Bayesian Risk Decoding (MBR) emerges as a promising decoding algorithm in Neural Machine Translation. However, MBR performs poorly with label smoothing, which is surprising as label smoothing provides decent improvement with beam search and improves generality in various tasks. In this work, we show that the issue arises from the inconsistency of label smoothing on the token-level and sequence-level distributions. We demonstrate that even though label smoothing only causes a slight change in the token level, the sequence-level distribution is highly skewed. We coin the issue autoregressive over-smoothness. To address this issue, we propose a simple and effective method, Distributional Cooling MBR (DC-MBR), which manipulates the entropy of output distributions by tuning down the Softmax temperature. We theoretically prove the equivalence between the pre-tuning label smoothing factor and distributional cooling. Extensive experiments on NMT benchmarks validate that distributional cooling improves MBR in various settings.
Continual learning is an emerging area of machine learning that deals with the issue where models adapt well to the latest data but lose the ability to remember past data due to changes in the data source. A widely adopted solution is by keeping a small memory of previous learned data that use replay. Most of the previous studies on continual learning focused on classification tasks, such as image classification and text classification, where the model needs only to categorize the input data. Inspired by the human ability to incrementally learn knowledge and solve different problems using learned knowledge, we considered a more pratical scenario, knowledge based quesiton answering about continual learning. In this scenario, each single question is different from others(means different fact trippes to answer them) while classification tasks only need to find feature boundaries of different categories, which are the curves or surfaces that separate different categories in the feature space. To address this issue, we proposed a depth aware hierarchical replay framework which include a tree structure classfier to have a sense of knowledge distribution and fill the gap between text classfication tasks and question-answering tasks for continual learning, a local sampler to grasp these critical samples and a depth aware learning network to reconstructe the feature space of a single learning round. In our experiments, we have demonstrated that our proposed model outperforms previous continual learning methods in mitigating the issue of catastrophic forgetting.
Events are considered as the fundamental building blocks of the world. Mining event-centric opinions can benefit decision making, people communication, and social good. Unfortunately, there is little literature addressing event-centric opinion mining, although which significantly diverges from the well-studied entity-centric opinion mining in connotation, structure, and expression. In this paper, we propose and formulate the task of event-centric opinion mining based on event-argument structure and expression categorizing theory. We also benchmark this task by constructing a pioneer corpus and designing a two-step benchmark framework. Experiment results show that event-centric opinion mining is feasible and challenging, and the proposed task, dataset, and baselines are beneficial for future studies.
N-gram language models (LM) has been largely superseded by neural LMs as the latter exhibits better performance. However, we find that n-gram models can achieve satisfactory performance on a large proportion of testing cases, indicating they have already captured abundant knowledge of the language with relatively low computational cost. With this observation, we propose to learn a neural LM that fits the residual between an n-gram LM and the real-data distribution. The combination of n-gram LMs and neural LMs not only allows the neural part to focus on deeper understanding of the language, but also provides a flexible way to customize a LM by switching the underlying n-gram model without changing the neural model. Experimental results on three typical language tasks (i.e., language modeling, machine translation, and summarization) demonstrate that our approach attains additional performance gains over popular standalone neural models consistently. We also show that our approach allows for effective domain adaptation by simply switching to a domain-specific n-gram model, without any extra training.
Current event-centric knowledge graphs highly rely on explicit connectives to mine relations between events. Unfortunately, due to the sparsity of connectives, these methods severely undermine the coverage of EventKGs. The lack of high-quality labelled corpora further exacerbates that problem. In this paper, we propose a knowledge projection paradigm for event relation extraction: projecting discourse knowledge to narratives by exploiting the commonalities between them. Specifically, we propose Multi-tier Knowledge Projection Network (MKPNet), which can leverage multi-tier discourse knowledge effectively for event relation extraction. In this way, the labelled data requirement is significantly reduced, and implicit event relations can be effectively extracted. Intrinsic experimental results show that MKPNet achieves the new state-of-the-art performance and extrinsic experimental results verify the value of the extracted event relations.
Previous literatures show that pre-trained masked language models (MLMs) such as BERT can achieve competitive factual knowledge extraction performance on some datasets, indicating that MLMs can potentially be a reliable knowledge source. In this paper, we conduct a rigorous study to explore the underlying predicting mechanisms of MLMs over different extraction paradigms. By investigating the behaviors of MLMs, we find that previous decent performance mainly owes to the biased prompts which overfit dataset artifacts. Furthermore, incorporating illustrative cases and external contexts improve knowledge prediction mainly due to entity type guidance and golden answer leakage. Our findings shed light on the underlying predicting mechanisms of MLMs, and strongly question the previous conclusion that current MLMs can potentially serve as reliable factual knowledge bases.
Event extraction is challenging due to the complex structure of event records and the semantic gap between text and event. Traditional methods usually extract event records by decomposing the complex structure prediction task into multiple subtasks. In this paper, we propose Text2Event, a sequence-to-structure generation paradigm that can directly extract events from the text in an end-to-end manner. Specifically, we design a sequence-to-structure network for unified event extraction, a constrained decoding algorithm for event knowledge injection during inference, and a curriculum learning algorithm for efficient model learning. Experimental results show that, by uniformly modeling all tasks in a single model and universally predicting different labels, our method can achieve competitive performance using only record-level annotations in both supervised learning and transfer learning settings.
Error correction is widely used in automatic speech recognition (ASR) to post-process the generated sentence, and can further reduce the word error rate (WER). Although multiple candidates are generated by an ASR system through beam search, current error correction approaches can only correct one sentence at a time, failing to leverage the voting effect from multiple candidates to better detect and correct error tokens. In this work, we propose FastCorrect 2, an error correction model that takes multiple ASR candidates as input for better correction accuracy. FastCorrect 2 adopts non-autoregressive generation for fast inference, which consists of an encoder that processes multiple source sentences and a decoder that generates the target sentence in parallel from the adjusted source sentence, where the adjustment is based on the predicted duration of each source token. However, there are some issues when handling multiple source sentences. First, it is non-trivial to leverage the voting effect from multiple source sentences since they usually vary in length. Thus, we propose a novel alignment algorithm to maximize the degree of token alignment among multiple sentences in terms of token and pronunciation similarity. Second, the decoder can only take one adjusted source sentence as input, while there are multiple source sentences. Thus, we develop a candidate predictor to detect the most suitable candidate for the decoder. Experiments on our inhouse dataset and AISHELL-1 show that FastCorrect 2 can further reduce the WER over the previous correction model with single candidate by 3.2% and 2.6%, demonstrating the effectiveness of leveraging multiple candidates in ASR error correction. FastCorrect 2 achieves better performance than the cascaded re-scoring and correction pipeline and can serve as a unified post-processing module for ASR.
Copying mechanism has been commonly used in neural paraphrasing networks and other text generation tasks, in which some important words in the input sequence are preserved in the output sequence. Similarly, in machine translation, we notice that there are certain words or phrases appearing in all good translations of one source text, and these words tend to convey important semantic information. Therefore, in this work, we define words carrying important semantic meanings in sentences as semantic core words. Moreover, we propose an MT evaluation approach named Semantically Weighted Sentence Similarity (SWSS). It leverages the power of UCCA to identify semantic core words, and then calculates sentence similarity scores on the overlap of semantic core words. Experimental results show that SWSS can consistently improve the performance of popular MT evaluation metrics which are based on lexical similarity.