Educational materials such as survey articles in specialized fields like computer science traditionally require tremendous expert inputs and are therefore expensive to create and update. Recently, Large Language Models (LLMs) have achieved significant success across various general tasks. However, their effectiveness and limitations in the education domain are yet to be fully explored. In this work, we examine the proficiency of LLMs in generating succinct survey articles specific to the niche field of NLP in computer science, focusing on a curated list of 99 topics. Automated benchmarks reveal that GPT-4 surpasses its predecessors, inluding GPT-3.5, PaLM2, and LLaMa2 by margins ranging from 2% to 20% in comparison to the established ground truth. We compare both human and GPT-based evaluation scores and provide in-depth analysis. While our findings suggest that GPT-created surveys are more contemporary and accessible than human-authored ones, certain limitations were observed. Notably, GPT-4, despite often delivering outstanding content, occasionally exhibited lapses like missing details or factual errors. At last, we compared the rating behavior between humans and GPT-4 and found systematic bias in using GPT evaluation.
Contrastive learning has recently achieved compelling performance in unsupervised sentence representation. As an essential element, data augmentation protocols, however, have not been well explored. The pioneering work SimCSE resorting to a simple dropout mechanism (viewed as continuous augmentation) surprisingly dominates discrete augmentations such as cropping, word deletion, and synonym replacement as reported. To understand the underlying rationales, we revisit existing approaches and attempt to hypothesize the desiderata of reasonable data augmentation methods: balance of semantic consistency and expression diversity. We then develop three simple yet effective discrete sentence augmentation schemes: punctuation insertion, modal verbs, and double negation. They act as minimal noises at lexical level to produce diverse forms of sentences. Furthermore, standard negation is capitalized on to generate negative samples for alleviating feature suppression involved in contrastive learning. We experimented extensively with semantic textual similarity on diverse datasets. The results support the superiority of the proposed methods consistently. Our key code is available at https://github.com/Zhudongsheng75/SDA
This paper presents VisLingInstruct, a novel approach to advancing Multi-Modal Language Models (MMLMs) in zero-shot learning. Current MMLMs show impressive zero-shot abilities in multi-modal tasks, but their performance depends heavily on the quality of instructions. VisLingInstruct tackles this by autonomously evaluating and optimizing instructional texts through In-Context Learning, improving the synergy between visual perception and linguistic expression in MMLMs. Alongside this instructional advancement, we have also optimized the visual feature extraction modules in MMLMs, further augmenting their responsiveness to textual content. Our comprehensive experiments on MMLMs, based on FlanT5 and Vicuna, show that VisLingInstruct significantly improves zero-shot performance in visual multi-modal tasks. Notably, it achieves a 13.1% and 9% increase in accuracy over the prior state-of-the-art on the TextVQA and HatefulMemes datasets. Our main code is available at https://github.com/Zhudongsheng75/VisLingInstruct
Current methods for prompt learning in zero-shot scenarios widely rely on a development set with sufficient human-annotated data to select the best-performing prompt template a posteriori. This is not ideal because in a real-world zero-shot scenario of practical relevance, no labelled data is available. Thus, we propose a simple yet effective method for screening reasonable prompt templates in zero-shot text classification: Perplexity Selection (Perplection). We hypothesize that language discrepancy can be used to measure the efficacy of prompt templates, and thereby develop a substantiated perplexity-based scheme allowing for forecasting the performance of prompt templates in advance. Experiments show that our method leads to improved prediction performance in a realistic zero-shot setting, eliminating the need for any labelled examples.
Recent advancements in multimodal foundation models (e.g., CLIP) have excelled in zero-shot generalization. Prompt tuning involved in the knowledge transfer from foundation models to downstream tasks has gained significant attention recently. Existing prompt-tuning methods in cross-modal learning, however, either solely focus on language branch, or learn vision-language interaction in a shallow mechanism. In this context, we propose a Deeply coupled Cross-modal Prompt learning (DCP) method based on CLIP. DCP flexibly accommodates the interplay between vision and language with a Cross-Modal Prompt Attention (CMPA) mechanism, which enables the mutual exchange of respective representation through a well-connected multi-head attention progressively and strongly. We then conduct comprehensive few-shot learning experiments on 11 image classification datasets and analyze the robustness to domain shift as well. Thorough experimental analysis evidently demonstrates the superb few-shot generalization and compelling domain adaption capacity of a well-executed DCP.
We present a novel rational-centric framework with human-in-the-loop – Rationales-centric Double-robustness Learning (RDL) – to boost model out-of-distribution performance in few-shot learning scenarios. By using static semi-factual generation and dynamic human-intervened correction, RDL, acting like a sensible “inductive bias”, exploits rationales (i.e. phrases that cause the prediction), human interventions and semi-factual augmentations to decouple spurious associations and bias models towards generally applicable underlying distributions, which enables fast and accurate generalisation. Experimental results show that RDL leads to significant prediction benefits on both in-distribution and out-of-distribution tests, especially for few-shot learning scenarios, compared to many state-of-the-art benchmarks. We also perform extensive ablation studies to support in-depth analyses of each component in our framework.
Jensen-Shannon divergence (JSD) is a distribution similarity measurement widely used in natural language processing. In corpus comparison tasks, where keywords are extracted to reveal the divergence between different corpora (for example, social media posts from proponents of different views on a political issue), two variants of JSD have emerged in the literature. One of these uses a weighting based on the relative sizes of the corpora being compared. In this paper we argue that this weighting is unnecessary and, in fact, can lead to misleading results. We recommend that this weighted version is not used. We base this recommendation on an analysis of the JSD variants and experiments showing how they impact corpus comparison results as the relative sizes of the corpora being compared change.