Heavily overparameterized language models such as BERT, XLNet and T5 have achieved impressive success in many NLP tasks. However, their high model complexity requires enormous computation resources and extremely long training time for both pre-training and fine-tuning. Many works have studied model compression on large NLP models, but only focusing on reducing inference time while still requiring an expensive training process. Other works use extremely large batch sizes to shorten the pre-training time, at the expense of higher computational resource demands. In this paper, inspired by the Early-Bird Lottery Tickets recently studied for computer vision tasks, we propose EarlyBERT, a general computationally-efficient training algorithm applicable to both pre-training and fine-tuning of large-scale language models. By slimming the self-attention and fully-connected sub-layers inside a transformer, we are the first to identify structured winning tickets in the early stage of BERT training. We apply those tickets towards efficient BERT training, and conduct comprehensive pre-training and fine-tuning experiments on GLUE and SQuAD downstream tasks. Our results show that EarlyBERT achieves comparable performance to standard BERT, with 35 45% less training time. Code is available at https://github.com/VITA-Group/EarlyBERT.
Natural language often exhibits inherent hierarchical structure ingrained with complex syntax and semantics. However, most state-of-the-art deep generative models learn embeddings only in Euclidean vector space, without accounting for this structural property of language. In this paper, we investigate text generation in a hyperbolic latent space to learn continuous hierarchical representations. An Adversarial Poincare Variational Autoencoder (APo-VAE) is presented, where both the prior and variational posterior of latent variables are defined over a Poincare ball via wrapped normal distributions. By adopting the primal-dual formulation of Kullback-Leibler divergence, an adversarial learning procedure is introduced to empower robust model training. Extensive experiments in language modeling, unaligned style transfer, and dialog-response generation demonstrate the effectiveness of the proposed APo-VAE model over VAEs in Euclidean latent space, thanks to its superb capabilities in capturing latent language hierarchies in hyperbolic space.
Multimodal pre-training has propelled great advancement in vision-and-language research. These large-scale pre-trained models, although successful, fatefully suffer from slow inference speed due to enormous computational cost mainly from cross-modal attention in Transformer architecture. When applied to real-life applications, such latency and computation demand severely deter the practical use of pre-trained models. In this paper, we study Image-text retrieval (ITR), the most mature scenario of V+L application, which has been widely studied even prior to the emergence of recent pre-trained models. We propose a simple yet highly effective approach, LightningDOT that accelerates the inference time of ITR by thousands of times, without sacrificing accuracy. LightningDOT removes the time-consuming cross-modal attention by extracting pre-cached feature indexes offline, and employing instant dot-product matching online, which significantly speeds up retrieval process. In fact, our LightningDOT achieves superior performance across mainstream ITR benchmarks such as Flickr30k and COCO datasets, outperforming existing pre-trained models that consume 1000 times magnitude of computational hours using the same features.
In this paper, we propose Cross-Thought, a novel approach to pre-training sequence encoder, which is instrumental in building reusable sequence embeddings for large-scale NLP tasks such as question answering. Instead of using the original signals of full sentences, we train a Transformer-based sequence encoder over a large set of short sequences, which allows the model to automatically select the most useful information for predicting masked words. Experiments on question answering and textual entailment tasks demonstrate that our pre-trained encoder can outperform state-of-the-art encoders trained with continuous sentence signals as well as traditional masked language modeling baselines. Our proposed approach also achieves new state of the art on HotpotQA (full-wiki setting) by improving intermediate information retrieval performance.
Existing language model compression methods mostly use a simple L_2 loss to distill knowledge in the intermediate representations of a large BERT model to a smaller one. Although widely used, this objective by design assumes that all the dimensions of hidden representations are independent, failing to capture important structural knowledge in the intermediate layers of the teacher network. To achieve better distillation efficacy, we propose Contrastive Distillation on Intermediate Representations (CoDIR), a principled knowledge distillation framework where the student is trained to distill knowledge through intermediate layers of the teacher via a contrastive objective. By learning to distinguish positive sample from a large set of negative samples, CoDIR facilitates the student’s exploitation of rich information in teacher’s hidden layers. CoDIR can be readily applied to compress large-scale language models in both pre-training and finetuning stages, and achieves superb performance on the GLUE benchmark, outperforming state-of-the-art compression methods.
We present HERO, a novel framework for large-scale video+language omni-representation learning. HERO encodes multimodal inputs in a hierarchical structure, where local context of a video frame is captured by a Cross-modal Transformer via multimodal fusion, and global video context is captured by a Temporal Transformer. In addition to standard Masked Language Modeling (MLM) and Masked Frame Modeling (MFM) objectives, we design two new pre-training tasks: (i) Video-Subtitle Matching (VSM), where the model predicts both global and local temporal alignment; and (ii) Frame Order Modeling (FOM), where the model predicts the right order of shuffled video frames. HERO is jointly trained on HowTo100M and large-scale TV datasets to gain deep understanding of complex social dynamics with multi-character interactions. Comprehensive experiments demonstrate that HERO achieves new state of the art on multiple benchmarks over Text-based Video/Video-moment Retrieval, Video Question Answering (QA), Video-and-language Inference and Video Captioning tasks across different domains. We also introduce two new challenging benchmarks How2QA and How2R for Video QA and Retrieval, collected from diverse video content over multimodalities.
In this paper, we present Hierarchical Graph Network (HGN) for multi-hop question answering. To aggregate clues from scattered texts across multiple paragraphs, a hierarchical graph is created by constructing nodes on different levels of granularity (questions, paragraphs, sentences, entities), the representations of which are initialized with pre-trained contextual encoders. Given this hierarchical graph, the initial node representations are updated through graph propagation, and multi-hop reasoning is performed via traversing through the graph edges for each subsequent sub-task (e.g., paragraph selection, supporting facts extraction, answer prediction). By weaving heterogeneous nodes into an integral unified graph, this hierarchical differentiation of node granularity enables HGN to support different question answering sub-tasks simultaneously. Experiments on the HotpotQA benchmark demonstrate that the proposed model achieves new state of the art, outperforming existing multi-hop QA approaches.
Pre-trained neural abstractive summarization systems have dominated extractive strategies on news summarization performance, at least in terms of ROUGE. However, system-generated abstractive summaries often face the pitfall of factual inconsistency: generating incorrect facts with respect to the source text. To address this challenge, we propose Span-Fact, a suite of two factual correction models that leverages knowledge learned from question answering models to make corrections in system-generated summaries via span selection. Our models employ single or multi-masking strategies to either iteratively or auto-regressively replace entities in order to ensure semantic consistency w.r.t. the source text, while retaining the syntactic structure of summaries generated by abstractive summarization models. Experiments show that our models significantly boost the factual consistency of system-generated summaries without sacrificing summary quality in terms of both automatic metrics and human evaluation.
Recently BERT has been adopted for document encoding in state-of-the-art text summarization models. However, sentence-based extractive models often result in redundant or uninformative phrases in the extracted summaries. Also, long-range dependencies throughout a document are not well captured by BERT, which is pre-trained on sentence pairs instead of documents. To address these issues, we present a discourse-aware neural summarization model - DiscoBert. DiscoBert extracts sub-sentential discourse units (instead of sentences) as candidates for extractive selection on a finer granularity. To capture the long-range dependencies among discourse units, structural discourse graphs are constructed based on RST trees and coreference mentions, encoded with Graph Convolutional Networks. Experiments show that the proposed model outperforms state-of-the-art methods by a significant margin on popular summarization benchmarks compared to other BERT-base models.
Large-scale pre-trained language model such as BERT has achieved great success in language understanding tasks. However, it remains an open question how to utilize BERT for language generation. In this paper, we present a novel approach, Conditional Masked Language Modeling (C-MLM), to enable the finetuning of BERT on target generation tasks. The finetuned BERT (teacher) is exploited as extra supervision to improve conventional Seq2Seq models (student) for better text generation performance. By leveraging BERT’s idiosyncratic bidirectional nature, distilling knowledge learned in BERT can encourage auto-regressive Seq2Seq models to plan ahead, imposing global sequence-level supervision for coherent text generation. Experiments show that the proposed approach significantly outperforms strong Transformer baselines on multiple language generation tasks such as machine translation and text summarization. Our proposed model also achieves new state of the art on IWSLT German-English and English-Vietnamese MT datasets.
We present a large, tunable neural conversational response generation model, DIALOGPT (dialogue generative pre-trained transformer). Trained on 147M conversation-like exchanges extracted from Reddit comment chains over a period spanning from 2005 through 2017, DialoGPT extends the Hugging Face PyTorch transformer to attain a performance close to human both in terms of automatic and human evaluation in single-turn dialogue settings. We show that conversational systems that leverage DialoGPT generate more relevant, contentful and context-consistent responses than strong baseline systems. The pre-trained model and training pipeline are publicly released to facilitate research into neural response generation and the development of more intelligent open-domain dialogue systems.
We introduce a new task, Contextual Text Style Transfer - translating a sentence into a desired style with its surrounding context taken into account. This brings two key challenges to existing style transfer approaches: (I) how to preserve the semantic meaning of target sentence and its consistency with surrounding context during transfer; (ii) how to train a robust model with limited labeled data accompanied by context. To realize high-quality style transfer with natural context preservation, we propose a Context-Aware Style Transfer (CAST) model, which uses two separate encoders for each input sentence and its surrounding context. A classifier is further trained to ensure contextual consistency of the generated sentence. To compensate for the lack of parallel data, additional self-reconstruction and back-translation losses are introduced to leverage non-parallel data in a semi-supervised fashion. Two new benchmarks, Enron-Context and Reddit-Context, are introduced for formality and offensiveness style transfer. Experimental results on these datasets demonstrate the effectiveness of the proposed CAST model over state-of-the-art methods across style accuracy, content preservation and contextual consistency metrics.
This paper presents a new model for visual dialog, Recurrent Dual Attention Network (ReDAN), using multi-step reasoning to answer a series of questions about an image. In each question-answering turn of a dialog, ReDAN infers the answer progressively through multiple reasoning steps. In each step of the reasoning process, the semantic representation of the question is updated based on the image and the previous dialog history, and the recurrently-refined representation is used for further reasoning in the subsequent step. On the VisDial v1.0 dataset, the proposed ReDAN model achieves a new state-of-the-art of 64.47% NDCG score. Visualization on the reasoning process further demonstrates that ReDAN can locate context-relevant visual and textual clues via iterative refinement, which can lead to the correct answer step-by-step.
Commonsense reasoning is fundamental to natural language understanding. While traditional methods rely heavily on human-crafted features and knowledge bases, we explore learning commonsense knowledge from a large amount of raw text via unsupervised learning. We propose two neural network models based on the Deep Structured Semantic Models (DSSM) framework to tackle two classic commonsense reasoning tasks, Winograd Schema challenges (WSC) and Pronoun Disambiguation (PDP). Evaluation shows that the proposed models effectively capture contextual information in the sentence and co-reference information between pronouns and nouns, and achieve significant improvement over previous state-of-the-art approaches.
We propose a multi-task learning framework to learn a joint Machine Reading Comprehension (MRC) model that can be applied to a wide range of MRC tasks in different domains. Inspired by recent ideas of data selection in machine translation, we develop a novel sample re-weighting scheme to assign sample-specific weights to the loss. Empirical study shows that our approach can be applied to many existing MRC models. Combined with contextual representations from pre-trained language models (such as ELMo), we achieve new state-of-the-art results on a set of MRC benchmark datasets. We release our code at https://github.com/xycforgithub/MultiTask-MRC.
In this paper, we focus on unsupervised domain adaptation for Machine Reading Comprehension (MRC), where the source domain has a large amount of labeled data, while only unlabeled passages are available in the target domain. To this end, we propose an Adversarial Domain Adaptation framework (AdaMRC), where (i) pseudo questions are first generated for unlabeled passages in the target domain, and then (ii) a domain classifier is incorporated into an MRC model to predict which domain a given passage-question pair comes from. The classifier and the passage-question encoder are jointly trained using adversarial learning to enforce domain-invariant representation learning. Comprehensive evaluations demonstrate that our approach (i) is generalizable to different MRC models and datasets, (ii) can be combined with pre-trained large-scale language models (such as ELMo and BERT), and (iii) can be extended to semi-supervised learning.
Pre-trained language models such as BERT have proven to be highly effective for natural language processing (NLP) tasks. However, the high demand for computing resources in training such models hinders their application in practice. In order to alleviate this resource hunger in large-scale model training, we propose a Patient Knowledge Distillation approach to compress an original large model (teacher) into an equally-effective lightweight shallow network (student). Different from previous knowledge distillation methods, which only use the output from the last layer of the teacher network for distillation, our student model patiently learns from multiple intermediate layers of the teacher model for incremental knowledge extraction, following two strategies: (i) PKD-Last: learning from the last k layers; and (ii) PKD-Skip: learning from every k layers. These two patient distillation schemes enable the exploitation of rich information in the teacher’s hidden layers, and encourage the student model to patiently learn from and imitate the teacher through a multi-layer distillation process. Empirically, this translates into improved results on multiple NLP tasks with a significant gain in training efficiency, without sacrificing model accuracy.
This paper presents a Discriminative Deep Dyna-Q (D3Q) approach to improving the effectiveness and robustness of Deep Dyna-Q (DDQ), a recently proposed framework that extends the Dyna-Q algorithm to integrate planning for task-completion dialogue policy learning. To obviate DDQ’s high dependency on the quality of simulated experiences, we incorporate an RNN-based discriminator in D3Q to differentiate simulated experience from real user experience in order to control the quality of training data. Experiments show that D3Q significantly outperforms DDQ by controlling the quality of simulated experience used for planning. The effectiveness and robustness of D3Q is further demonstrated in a domain extension setting, where the agent’s capability of adapting to a changing environment is tested.
Training a task-completion dialogue agent via reinforcement learning (RL) is costly because it requires many interactions with real users. One common alternative is to use a user simulator. However, a user simulator usually lacks the language complexity of human interlocutors and the biases in its design may tend to degrade the agent. To address these issues, we present Deep Dyna-Q, which to our knowledge is the first deep RL framework that integrates planning for task-completion dialogue policy learning. We incorporate into the dialogue agent a model of the environment, referred to as the world model, to mimic real user response and generate simulated experience. During dialogue policy learning, the world model is constantly updated with real user experience to approach real user behavior, and in turn, the dialogue agent is optimized using both real experience and simulated experience. The effectiveness of our approach is demonstrated on a movie-ticket booking task in both simulated and human-in-the-loop settings.
Essential grammatical information is conveyed in signed languages by clusters of events involving facial expressions and movements of the head and upper body. This poses a significant challenge for computer-based sign language recognition. Here, we present new methods for the recognition of nonmanual grammatical markers in American Sign Language (ASL) based on: (1) new 3D tracking methods for the estimation of 3D head pose and facial expressions to determine the relevant low-level features; (2) methods for higher-level analysis of component events (raised/lowered eyebrows, periodic head nods and head shakes) used in grammatical markings―with differentiation of temporal phases (onset, core, offset, where appropriate), analysis of their characteristic properties, and extraction of corresponding features; (3) a 2-level learning framework to combine low- and high-level features of differing spatio-temporal scales. This new approach achieves significantly better tracking and recognition results than our previous methods.