Jinyoung Kim
2024
GrowOVER: How Can LLMs Adapt to Growing Real-World Knowledge?
Dayoon Ko
|
Jinyoung Kim
|
Hahyeon Choi
|
Gunhee Kim
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In the real world, knowledge is constantly evolving, which can render existing knowledge-based datasets outdated. This unreliability highlights the critical need for continuous updates to ensure both accuracy and relevance in knowledge-intensive tasks. To address this, we propose GrowOVER-QA and GrowOVER-Dialogue, dynamic open-domain QA and dialogue benchmarks that undergo a continuous cycle of updates, keeping pace with the rapid evolution of knowledge. Our research indicates that retrieval-augmented language models (RaLMs) struggle with knowledge that has not been trained on or recently updated. Consequently, we introduce a novel retrieval-interactive language model framework, where the language model evaluates and reflects on its answers for further re-retrieval. Our exhaustive experiments demonstrate that our training-free framework significantly improves upon existing methods, performing comparably to or even surpassing continuously trained language models.
2023
Contrastively Pretrained Vision-Language Transformers and Domain Adaptation Methods for Multimodal TOD Systems
Youngjae Chang
|
Doo Young Kim
|
Jinyoung Kim
|
Keunha Kim
|
Hyunmook Cha
|
Suyoung Min
|
Youngjoong Ko
|
Kye-Hwan Lee
|
Joonwoo Park
Proceedings of The Eleventh Dialog System Technology Challenge
The Situated Interactive MultiModal Conversations (SIMMC2.1) Challenge 2022 is hosted by the Eleventh Dialog System Technology Challenge (DSTC11). This is the third consecutive year multimodal dialog systems have been selected as an official track of the competition, promoted by the continued interest in the research community. The task of SIMMC is to create a shopping assistant agent that can communicate with customers in a virtual store. It requires processing store scenes and product catalogs along with the customer’s request. The task is decomposed into four steps and each becomes a subtask. In this work, we explore the common approaches to modeling multimodality and find the method with the most potential. We also identify a discrepancy in using pretrained language models for dialog tasks and devise a simple domain-adaptation method. Our model came in third place for object coreferencing, dialog state tracking, and response generation tasks.
Search
Co-authors
- Dayoon Ko 1
- Hahyeon Choi 1
- Gunhee Kim 1
- Youngjae Chang 1
- Doo Young Kim 1
- show all...