Reference resolution is an important problem, one that is essential to understand and successfully handle contexts of different kinds. This context includes both previous turns and context that pertains to non-conversational entities, such as entities on the user’s screen or those running in the background. While LLMs have been shown to be extremely powerful for a variety of tasks, their use in reference resolution, particularly for non-conversational entities, remains underutilized. This paper demonstrates how LLMs can be used to create an effective system to resolve references of various types, by showing how reference resolution can be converted into a language modeling problem, despite involving forms of entities like those on screen that are not traditionally conducive to being reduced to a text-only modality. We demonstrate large improvements over an existing system with similar functionality across different types of references, with our smallest model obtaining absolute gains of over 5% for on-screen references. We also benchmark against GPT-3.5 and GPT-4, with our smallest model achieving performance comparable to that of GPT-4, and our larger models substantially outperforming it.
In-context learning with Large Language Models (LLMs) has emerged as a promising avenue of research in Dialog State Tracking (DST). However, the best-performing in-context learning methods involve retrieving and adding similar examples to the prompt, requiring access to labeled training data. Procuring such training data for a wide range of domains and applications is time-consuming, expensive, and, at times, infeasible. While zero-shot learning requires no training data, it significantly lags behind the few-shot setup. Thus, ‘Can we efficiently generate synthetic data for any dialogue schema to enable few-shot prompting?' Addressing this question, we propose , a data generation framework tailored for DST, utilizing LLMs. Our approach only requires the dialogue schema and a few hand-crafted dialogue templates to synthesize natural, coherent, and free-flowing dialogues with DST annotations. Few-shot learning using data from results in 4-5% improvement in Joint Goal Accuracy over the zero-shot baseline on MultiWOZ 2.1 and 2.4. Remarkably, our few-shot learning approach recovers nearly 98% of the performance compared to the few-shot setup using human-annotated training data.
Understanding context is key to understanding human language, an ability which Large Language Models (LLMs) have been increasingly seen to demonstrate to an impressive extent. However, though the evaluation of LLMs encompasses various domains within the realm of Natural Language Processing, limited attention has been paid to probing their linguistic capability of understanding contextual features. This paper introduces a context understanding benchmark by adapting existing datasets to suit the evaluation of generative models. This benchmark comprises of four distinct tasks and nine datasets, all featuring prompts designed to assess the models’ ability to understand context. First, we evaluate the performance of LLMs under the in-context learning pretraining scenario. Experimental results indicate that pre-trained dense models struggle with understanding more nuanced contextual features when compared to state-of-the-art fine-tuned models. Second, as LLM compression holds growing significance in both research and real-world applications, we assess the context understanding of quantized models under in-context-learning settings. We find that 3-bit post-training quantization leads to varying degrees of performance reduction on our benchmark. We conduct an extensive analysis of these scenarios to substantiate our experimental results.
In the context of a voice assistant system, steering refers to the phenomenon in which a user issues a follow-up command attempting to direct or clarify a previous turn. We propose STEER, a steering detection model that predicts whether a follow-up turn is a user’s attempt to steer the previous command. Constructing a training dataset for steering use cases poses challenges due to the cold-start problem. To overcome this, we developed heuristic rules to sample opt-in usage data, approximating positive and negative samples without any annotation. Our experimental results show promising performance in identifying steering intent, with over 95% accuracy on our sampled data. Moreover, STEER, in conjunction with our sampling strategy, aligns effectively with real-world steering scenarios, as evidenced by its strong zero-shot performance on a human-graded evaluation set. In addition to relying solely on user transcripts as input, we introduce STEER+, an enhanced version of the model. STEER+ utilizes a semantic parse tree to provide more context on out-of-vocabulary words, such as named entities that often occur at the sentence boundary. This further improves model performance, reducing error rate in domains where entities frequently appear, such as messaging. Lastly, we present a data analysis that highlights the improvement in user experience when voice assistants support steering use cases.
When tasked with supporting multiple languages for a given problem, two approaches have arisen: training a model for each language with the annotation budget divided equally among them, and training on a high-resource language followed by zero-shot transfer to the remaining languages. In this work, we show that the strategy of joint learning across multiple languages using a single model performs substantially better than the aforementioned alternatives. We also demonstrate that active learning provides additional, complementary benefits. We show that this simple approach enables the model to be data efficient by allowing it to arbitrate its annotation budget to query languages it is less certain on. We illustrate the effectiveness of our proposed method on a diverse set of tasks: a classification task with 4 languages, a sequence tagging task with 4 languages and a dependency parsing task with 5 languages. Our proposed method, whilst simple, substantially outperforms the other viable alternatives for building a model in a multilingual setting under constrained budgets.
Anaphora and ellipses are two common phenomena in dialogues. Without resolving referring expressions and information omission, dialogue systems may fail to generate consistent and coherent responses. Traditionally, anaphora is resolved by coreference resolution and ellipses by query rewrite. In this work, we propose a novel joint learning framework of modeling coreference resolution and query rewriting for complex, multi-turn dialogue understanding. Given an ongoing dialogue between a user and a dialogue assistant, for the user query, our joint learning model first predicts coreference links between the query and the dialogue context, and then generates a self-contained rewritten user query. To evaluate our model, we annotate a dialogue based coreference resolution dataset, MuDoCo, with rewritten queries. Results show that the performance of query rewrite can be substantially boosted (+2.3% F1) with the aid of coreference modeling. Furthermore, our joint model outperforms the state-of-the-art coreference resolution model (+2% F1) on this dataset.
Named Entity Recognition (NER) and Entity Linking (EL) play an essential role in voice assistant interaction, but are challenging due to the special difficulties associated with spoken user queries. In this paper, we propose a novel architecture that jointly solves the NER and EL tasks by combining them in a joint reranking module. We show that our proposed framework improves NER accuracy by up to 3.13% and EL accuracy by up to 3.6% in F1 score. The features used also lead to better accuracies in other natural language understanding tasks, such as domain classification and semantic parsing.
Entity tags in human-machine dialog are integral to natural language understanding (NLU) tasks in conversational assistants. However, current systems struggle to accurately parse spoken queries with the typical use of text input alone, and often fail to understand the user intent. Previous work in linguistics has identified a cross-language tendency for longer speech pauses surrounding nouns as compared to verbs. We demonstrate that the linguistic observation on pauses can be used to improve accuracy in machine-learnt language understanding tasks. Analysis of pauses in French and English utterances from a commercial voice assistant shows the statistically significant difference in pause duration around multi-token entity span boundaries compared to within entity spans. Additionally, in contrast to text-based NLU, we apply pause duration to enrich contextual embeddings to improve shallow parsing of entities. Results show that our proposed novel embeddings improve the relative error rate by up to 8% consistently across three domains for French, without any added annotation or alignment costs to the parser.
Recent work on bilingual lexicon induction (BLI) has frequently depended either on aligned bilingual lexicons or on distribution matching, often with an assumption about the isometry of the two spaces. We propose a technique to quantitatively estimate this assumption of the isometry between two embedding spaces and empirically show that this assumption weakens as the languages in question become increasingly etymologically distant. We then propose Bilingual Lexicon Induction with Semi-Supervision (BLISS) — a semi-supervised approach that relaxes the isometric assumption while leveraging both limited aligned bilingual lexicons and a larger set of unaligned word embeddings, as well as a novel hubness filtering technique. Our proposed method obtains state of the art results on 15 of 18 language pairs on the MUSE dataset, and does particularly well when the embedding spaces don’t appear to be isometric. In addition, we also show that adding supervision stabilizes the learning procedure, and is effective even with minimal supervision.
In this work, we propose a novel approach that predicts the relationships between various entities in an image in a weakly supervised manner by relying on image captions and object bounding box annotations as the sole source of supervision. Our proposed approach uses a top-down attention mechanism to align entities in captions to objects in the image, and then leverage the syntactic structure of the captions to align the relations. We use these alignments to train a relation classification network, thereby obtaining both grounded captions and dense relationships. We demonstrate the effectiveness of our model on the Visual Genome dataset by achieving a recall@50 of 15% and recall@100 of 25% on the relationships present in the image. We also show that the model successfully predicts relations that are not present in the corresponding captions.
The task of entity recognition has traditionally been modelled as a sequence labelling task. However, this usually requires a large amount of fine-grained data annotated at the token level, which in turn can be expensive and cumbersome to obtain. In this work, we aim to circumvent this requirement of word-level annotated data. To achieve this, we propose a novel architecture for entity recognition from a corpus containing weak binary presence/absence labels, which are relatively easier to obtain. We show that our proposed weakly supervised model, trained solely on a multi-label classification task, performs reasonably well on the task of entity recognition, despite not having access to any token-level ground truth data.