Joern Wuebker


2022

pdf bib
Automatic Correction of Human Translations
Jessy Lin | Geza Kovacs | Aditya Shastry | Joern Wuebker | John DeNero
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We introduce translation error correction (TEC), the task of automatically correcting human-generated translations. Imperfections in machine translations (MT) have long motivated systems for improving translations post-hoc with automatic post-editing. In contrast, little attention has been devoted to the problem of automatically correcting human translations, despite the intuition that humans make distinct errors that machines would be well-suited to assist with, from typos to inconsistencies in translation conventions. To investigate this, we build and release the Aced corpus with three TEC datasets (available at: github.com/lilt/tec). We show that human errors in TEC exhibit a more diverse range of errors and far fewer translation fluency errors than the MT errors in automatic post-editing datasets, suggesting the need for dedicated TEC models that are specialized to correct human errors. We show that pre-training instead on synthetic errors based on human errors improves TEC F-score by as much as 5.1 points. We conducted a human-in-the-loop user study with nine professional translation editors and found that the assistance of our TEC system led them to produce significantly higher quality revised translations.

2021

pdf bib
Automatic Bilingual Markup Transfer
Thomas Zenkel | Joern Wuebker | John DeNero
Findings of the Association for Computational Linguistics: EMNLP 2021

We describe the task of bilingual markup transfer, which involves placing markup tags from a source sentence into a fixed target translation. This task arises in practice when a human translator generates the target translation without markup, and then the system infers the placement of markup tags. This task contrasts from previous work in which markup transfer is performed jointly with machine translation. We propose two novel metrics and evaluate several approaches based on unsupervised word alignments as well as a supervised neural sequence-to-sequence model. Our best approach achieves an average accuracy of 94.7% across six language pairs, indicating its potential usefulness for real-world localization tasks.

2020

pdf bib
End-to-End Neural Word Alignment Outperforms GIZA++
Thomas Zenkel | Joern Wuebker | John DeNero
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Word alignment was once a core unsupervised learning task in natural language processing because of its essential role in training statistical machine translation (MT) models. Although unnecessary for training neural MT models, word alignment still plays an important role in interactive applications of neural machine translation, such as annotation transfer and lexicon injection. While statistical MT methods have been replaced by neural approaches with superior performance, the twenty-year-old GIZA++ toolkit remains a key component of state-of-the-art word alignment systems. Prior work on neural word alignment has only been able to outperform GIZA++ by using its output during training. We present the first end-to-end neural word alignment method that consistently outperforms GIZA++ on three data sets. Our approach repurposes a Transformer model trained for supervised translation to also serve as an unsupervised word alignment model in a manner that is tightly integrated and does not affect translation quality.

2019

pdf bib
Measuring Immediate Adaptation Performance for Neural Machine Translation
Patrick Simianer | Joern Wuebker | John DeNero
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Incremental domain adaptation, in which a system learns from the correct output for each input immediately after making its prediction for that input, can dramatically improve system performance for interactive machine translation. Users of interactive systems are sensitive to the speed of adaptation and how often a system repeats mistakes, despite being corrected. Adaptation is most commonly assessed using corpus-level BLEU- or TER-derived metrics that do not explicitly take adaptation speed into account. We find that these metrics often do not capture immediate adaptation effects, such as zero-shot and one-shot learning of domain-specific lexical items. To this end, we propose new metrics that directly evaluate immediate adaptation performance for machine translation. We use these metrics to choose the most suitable adaptation method from a range of different adaptation techniques for neural machine translation systems.

2018

pdf bib
Compact Personalized Models for Neural Machine Translation
Joern Wuebker | Patrick Simianer | John DeNero
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We propose and compare methods for gradient-based domain adaptation of self-attentive neural machine translation models. We demonstrate that a large proportion of model parameters can be frozen during adaptation with minimal or no reduction in translation quality by encouraging structured sparsity in the set of offset tensors during learning via group lasso regularization. We evaluate this technique for both batch and incremental adaptation across multiple data sets and language pairs. Our system architecture–combining a state-of-the-art self-attentive model with compact domain adaptation–provides high quality personalized machine translation that is both space and time efficient.

2016

pdf bib
A Comparative Study on Vocabulary Reduction for Phrase Table Smoothing
Yunsu Kim | Andreas Guta | Joern Wuebker | Hermann Ney
Proceedings of the First Conference on Machine Translation: Volume 1, Research Papers

pdf bib
Models and Inference for Prefix-Constrained Machine Translation
Joern Wuebker | Spence Green | John DeNero | Saša Hasan | Minh-Thang Luong
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2015

pdf bib
The RWTH Aachen German-English Machine Translation System for WMT 2015
Jan-Thorsten Peter | Farzad Toutounchi | Joern Wuebker | Hermann Ney
Proceedings of the Tenth Workshop on Statistical Machine Translation

pdf bib
Extended Translation Models in Phrase-based Decoding
Andreas Guta | Joern Wuebker | Miguel Graça | Yunsu Kim | Hermann Ney
Proceedings of the Tenth Workshop on Statistical Machine Translation

pdf bib
A Comparison of Update Strategies for Large-Scale Maximum Expected BLEU Training
Joern Wuebker | Sebastian Muehr | Patrick Lehnen | Stephan Peitz | Hermann Ney
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Hierarchical Incremental Adaptation for Statistical Machine Translation
Joern Wuebker | Spence Green | John DeNero
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
A Comparison between Count and Neural Network Models Based on Joint Translation and Reordering Sequences
Andreas Guta | Tamer Alkhouli | Jan-Thorsten Peter | Joern Wuebker | Hermann Ney
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

2014

pdf bib
Translation Modeling with Bidirectional Recurrent Neural Networks
Martin Sundermeyer | Tamer Alkhouli | Joern Wuebker | Hermann Ney
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

pdf bib
Comparison of data selection techniques for the translation of video lectures
Joern Wuebker | Hermann Ney | Adrià Martínez-Villaronga | Adrià Giménez | Alfons Juan | Christophe Servan | Marc Dymetman | Shachar Mirkin
Proceedings of the 11th Conference of the Association for Machine Translation in the Americas: MT Researchers Track

For the task of online translation of scientific video lectures, using huge models is not possible. In order to get smaller and efficient models, we perform data selection. In this paper, we perform a qualitative and quantitative comparison of several data selection techniques, based on cross-entropy and infrequent n-gram criteria. In terms of BLEU, a combination of translation and language model cross-entropy achieves the most stable results. As another important criterion for measuring translation quality in our application, we identify the number of out-of-vocabulary words. Here, infrequent n-gram recovery shows superior performance. Finally, we combine the two selection techniques in order to benefit from both their strengths.

pdf bib
Combined spoken language translation
Markus Freitag | Joern Wuebker | Stephan Peitz | Hermann Ney | Matthias Huck | Alexandra Birch | Nadir Durrani | Philipp Koehn | Mohammed Mediani | Isabel Slawik | Jan Niehues | Eunach Cho | Alex Waibel | Nicola Bertoldi | Mauro Cettolo | Marcello Federico
Proceedings of the 11th International Workshop on Spoken Language Translation: Evaluation Campaign

EU-BRIDGE is a European research project which is aimed at developing innovative speech translation technology. One of the collaborative efforts within EU-BRIDGE is to produce joint submissions of up to four different partners to the evaluation campaign at the 2014 International Workshop on Spoken Language Translation (IWSLT). We submitted combined translations to the German→English spoken language translation (SLT) track as well as to the German→English, English→German and English→French machine translation (MT) tracks. In this paper, we present the techniques which were applied by the different individual translation systems of RWTH Aachen University, the University of Edinburgh, Karlsruhe Institute of Technology, and Fondazione Bruno Kessler. We then show the combination approach developed at RWTH Aachen University which combined the individual systems. The consensus translations yield empirical gains of up to 2.3 points in BLEU and 1.2 points in TER compared to the best individual system.

pdf bib
The RWTH Aachen machine translation systems for IWSLT 2014
Joern Wuebker | Stephan Peitz | Andreas Guta | Hermann Ney
Proceedings of the 11th International Workshop on Spoken Language Translation: Evaluation Campaign

This work describes the statistical machine translation (SMT) systems of RWTH Aachen University developed for the evaluation campaign International Workshop on Spoken Language Translation (IWSLT) 2014. We participated in both the MT and SLT tracks for the English→French and German→English language pairs and applied the identical training pipeline and models on both language pairs. Our state-of-the-art phrase-based baseline systems are augmented with maximum expected BLEU training for phrasal, lexical and reordering models. Further, we apply rescoring with novel recurrent neural language and translation models. The same systems are used for the SLT track, where we additionally perform punctuation prediction on the automatic transcriptions employing hierarchical phrase-based translation. We are able to improve RWTH’s 2013 evaluation systems by 1.7-1.8% BLEU absolute.

pdf bib
EU-BRIDGE MT: Combined Machine Translation
Markus Freitag | Stephan Peitz | Joern Wuebker | Hermann Ney | Matthias Huck | Rico Sennrich | Nadir Durrani | Maria Nadejde | Philip Williams | Philipp Koehn | Teresa Herrmann | Eunah Cho | Alex Waibel
Proceedings of the Ninth Workshop on Statistical Machine Translation

pdf bib
The RWTH Aachen German-English Machine Translation System for WMT 2014
Stephan Peitz | Joern Wuebker | Markus Freitag | Hermann Ney
Proceedings of the Ninth Workshop on Statistical Machine Translation

2013

pdf bib
Improving Statistical Machine Translation with Word Class Models
Joern Wuebker | Stephan Peitz | Felix Rietig | Hermann Ney
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

pdf bib
The RWTH Aachen Machine Translation System for WMT 2013
Stephan Peitz | Saab Mansour | Jan-Thorsten Peter | Christoph Schmidt | Joern Wuebker | Matthias Huck | Markus Freitag | Hermann Ney
Proceedings of the Eighth Workshop on Statistical Machine Translation

pdf bib
Length-Incremental Phrase Training for SMT
Joern Wuebker | Hermann Ney
Proceedings of the Eighth Workshop on Statistical Machine Translation

pdf bib
A Phrase Orientation Model for Hierarchical Machine Translation
Matthias Huck | Joern Wuebker | Felix Rietig | Hermann Ney
Proceedings of the Eighth Workshop on Statistical Machine Translation

pdf bib
The RWTH Aachen machine translation systems for IWSLT 2013
Joern Wuebker | Stephan Peitz | Tamer Alkhouli | Jan-Thorsten Peter | Minwei Feng | Markus Freitag | Hermann Ney
Proceedings of the 10th International Workshop on Spoken Language Translation: Evaluation Campaign

This work describes the statistical machine translation (SMT) systems of RWTH Aachen University developed for the evaluation campaign International Workshop on Spoken Language Translation (IWSLT) 2013. We participated in the English→French, English↔German, Arabic→English, Chinese→English and Slovenian↔English MT tracks and the English→French and English→German SLT tracks. We apply phrase-based and hierarchical SMT decoders, which are augmented by state-of-the-art extensions. The novel techniques we experimentally evaluate include discriminative phrase training, a continuous space language model, a hierarchical reordering model, a word class language model, domain adaptation via data selection and system combination of standard and reverse order models. By application of these methods we can show considerable improvements over the respective baseline systems.

pdf bib
EU-BRIDGE MT: text translation of talks in the EU-BRIDGE project
Markus Freitag | Stephan Peitz | Joern Wuebker | Hermann Ney | Nadir Durrani | Matthias Huck | Philipp Koehn | Thanh-Le Ha | Jan Niehues | Mohammed Mediani | Teresa Herrmann | Alex Waibel | Nicola Bertoldi | Mauro Cettolo | Marcello Federico
Proceedings of the 10th International Workshop on Spoken Language Translation: Evaluation Campaign

EU-BRIDGE1 is a European research project which is aimed at developing innovative speech translation technology. This paper describes one of the collaborative efforts within EUBRIDGE to further advance the state of the art in machine translation between two European language pairs, English→French and German→English. Four research institutions involved in the EU-BRIDGE project combined their individual machine translation systems and participated with a joint setup in the machine translation track of the evaluation campaign at the 2013 International Workshop on Spoken Language Translation (IWSLT). We present the methods and techniques to achieve high translation quality for text translation of talks which are applied at RWTH Aachen University, the University of Edinburgh, Karlsruhe Institute of Technology, and Fondazione Bruno Kessler. We then show how we have been able to considerably boost translation performance (as measured in terms of the metrics BLEU and TER) by means of system combination. The joint setups yield empirical gains of up to 1.4 points in BLEU and 2.8 points in TER on the IWSLT test sets compared to the best single systems.

2012

pdf bib
Phrase Model Training for Statistical Machine Translation with Word Lattices of Preprocessing Alternatives
Joern Wuebker | Hermann Ney
Proceedings of the Seventh Workshop on Statistical Machine Translation

pdf bib
Leave-One-Out Phrase Model Training for Large-Scale Deployment
Joern Wuebker | Mei-Yuh Hwang | Chris Quirk
Proceedings of the Seventh Workshop on Statistical Machine Translation

pdf bib
Forced Derivations for Hierarchical Machine Translation
Stephan Peitz | Arne Mauser | Joern Wuebker | Hermann Ney
Proceedings of COLING 2012: Posters

pdf bib
Jane 2: Open Source Phrase-based and Hierarchical Statistical Machine Translation
Joern Wuebker | Matthias Huck | Stephan Peitz | Malte Nuhn | Markus Freitag | Jan-Thorsten Peter | Saab Mansour | Hermann Ney
Proceedings of COLING 2012: Demonstration Papers

pdf bib
The RWTH Aachen speech recognition and machine translation system for IWSLT 2012
Stephan Peitz | Saab Mansour | Markus Freitag | Minwei Feng | Matthias Huck | Joern Wuebker | Malte Nuhn | Markus Nußbaum-Thom | Hermann Ney
Proceedings of the 9th International Workshop on Spoken Language Translation: Evaluation Campaign

In this paper, the automatic speech recognition (ASR) and statistical machine translation (SMT) systems of RWTH Aachen University developed for the evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT) 2012 are presented. We participated in the ASR (English), MT (English-French, Arabic-English, Chinese-English, German-English) and SLT (English-French) tracks. For the MT track both hierarchical and phrase-based SMT decoders are applied. A number of different techniques are evaluated in the MT and SLT tracks, including domain adaptation via data selection, translation model interpolation, phrase training for hierarchical and phrase-based systems, additional reordering model, word class language model, various Arabic and Chinese segmentation methods, postprocessing of speech recognition output with an SMT system, and system combination. By application of these methods we can show considerable improvements over the respective baseline systems.

pdf bib
Fast and Scalable Decoding with Language Model Look-Ahead for Phrase-based Statistical Machine Translation
Joern Wuebker | Hermann Ney | Richard Zens
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2011

pdf bib
The RWTH Aachen machine translation system for IWSLT 2011
Joern Wuebker | Matthias Huck | Saab Mansour | Markus Freitag | Minwei Feng | Stephan Peitz | Christoph Schmidt | Hermann Ney
Proceedings of the 8th International Workshop on Spoken Language Translation: Evaluation Campaign

In this paper the statistical machine translation (SMT) systems of RWTH Aachen University developed for the evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT) 2011 is presented. We participated in the MT (English-French, Arabic-English, ChineseEnglish) and SLT (English-French) tracks. Both hierarchical and phrase-based SMT decoders are applied. A number of different techniques are evaluated, including domain adaptation via monolingual and bilingual data selection, phrase training, different lexical smoothing methods, additional reordering models for the hierarchical system, various Arabic and Chinese segmentation methods, punctuation prediction for speech recognition output, and system combination. By application of these methods we can show considerable improvements over the respective baseline systems.

pdf bib
Advances on spoken language translation in the Quaero program
Karim Boudahmane | Bianka Buschbeck | Eunah Cho | Josep Maria Crego | Markus Freitag | Thomas Lavergne | Hermann Ney | Jan Niehues | Stephan Peitz | Jean Senellart | Artem Sokolov | Alex Waibel | Tonio Wandmacher | Joern Wuebker | François Yvon
Proceedings of the 8th International Workshop on Spoken Language Translation: Evaluation Campaign

The Quaero program is an international project promoting research and industrial innovation on technologies for automatic analysis and classification of multimedia and multilingual documents. Within the program framework, research organizations and industrial partners collaborate to develop prototypes of innovating applications and services for access and usage of multimedia data. One of the topics addressed is the translation of spoken language. Each year, a project-internal evaluation is conducted by DGA to monitor the technological advances. This work describes the design and results of the 2011 evaluation campaign. The participating partners were RWTH, KIT, LIMSI and SYSTRAN. Their approaches are compared on both ASR output and reference transcripts of speech data for the translation between French and German. The results show that the developed techniques further the state of the art and improve translation quality.

pdf bib
Combining translation and language model scoring for domain-specific data filtering
Saab Mansour | Joern Wuebker | Hermann Ney
Proceedings of the 8th International Workshop on Spoken Language Translation: Papers

The increasing popularity of statistical machine translation (SMT) systems is introducing new domains of translation that need to be tackled. As many resources are already available, domain adaptation methods can be applied to utilize these recourses in the most beneficial way for the new domain. We explore adaptation via filtering, using the crossentropy scores to discard irrelevant sentences. We focus on filtering for two important components of an SMT system, namely the language model (LM) and the translation model (TM). Previous work has already applied LM cross-entropy based scoring for filtering. We argue that LM cross-entropy might be appropriate for LM filtering, but not as much for TM filtering. We develop a novel filtering approach based on a combined TM and LM cross-entropy scores. We experiment with two large-scale translation tasks, the Arabic-to-English and English-to-French IWSLT 2011 TED Talks MT tasks. For LM filtering, we achieve strong perplexity improvements which carry over to the translation quality with improvements up to +0.4% BLEU. For TM filtering, the combined method achieves small but consistent improvements over the standalone methods. As a side effect of adaptation via filtering, the fully fledged SMT system vocabulary size and phrase table size are reduced by a factor of at least 2 while up to +0.6% BLEU improvement is observed.

pdf bib
Joint WMT Submission of the QUAERO Project
Markus Freitag | Gregor Leusch | Joern Wuebker | Stephan Peitz | Hermann Ney | Teresa Herrmann | Jan Niehues | Alex Waibel | Alexandre Allauzen | Gilles Adda | Josep Maria Crego | Bianka Buschbeck | Tonio Wandmacher | Jean Senellart
Proceedings of the Sixth Workshop on Statistical Machine Translation

pdf bib
The RWTH Aachen Machine Translation System for WMT 2011
Matthias Huck | Joern Wuebker | Christoph Schmidt | Markus Freitag | Stephan Peitz | Daniel Stein | Arnaud Dagnelies | Saab Mansour | Gregor Leusch | Hermann Ney
Proceedings of the Sixth Workshop on Statistical Machine Translation

2010

pdf bib
The RWTH Aachen Machine Translation System for WMT 2010
Carmen Heger | Joern Wuebker | Matthias Huck | Gregor Leusch | Saab Mansour | Daniel Stein | Hermann Ney
Proceedings of the Joint Fifth Workshop on Statistical Machine Translation and MetricsMATR

pdf bib
Training Phrase Translation Models with Leaving-One-Out
Joern Wuebker | Arne Mauser | Hermann Ney
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics

pdf bib
The RWTH Aachen machine translation system for IWSLT 2010
Saab Mansour | Stephan Peitz | David Vilar | Joern Wuebker | Hermann Ney
Proceedings of the 7th International Workshop on Spoken Language Translation: Evaluation Campaign

In this paper we describe the statistical machine translation system of the RWTH Aachen University developed for the translation task of the IWSLT 2010. This year, we participated in the BTEC translation task for the Arabic to English language direction. We experimented with two state-of-theart decoders: phrase-based and hierarchical-based decoders. Extensions to the decoders included phrase training (as opposed to heuristic phrase extraction) for the phrase-based decoder, and soft syntactic features for the hierarchical decoder. Additionally, we experimented with various rule-based and statistical-based segmenters for Arabic. Due to the different decoders and the different methodologies that we apply for segmentation, we expect that there will be complimentary variation in the results achieved by each system. The next step would be to exploit these variations and achieve better results by combining the systems. We try different strategies for system combination and report significant improvements over the best single system.

pdf bib
A combination of hierarchical systems with forced alignments from phrase-based systems
Carmen Heger | Joern Wuebker | David Vilar | Hermann Ney
Proceedings of the 7th International Workshop on Spoken Language Translation: Papers

Currently most state-of-the-art statistical machine translation systems present a mismatch between training and generation conditions. Word alignments are computed using the well known IBM models for single-word based translation. Afterwards phrases are extracted using extraction heuristics, unrelated to the stochastic models applied for finding the word alignment. In the last years, several research groups have tried to overcome this mismatch, but only with limited success. Recently, the technique of forced alignments has shown to improve translation quality for a phrase-based system, applying a more statistically sound approach to phrase extraction. In this work we investigate the first steps to combine forced alignment with a hierarchical model. Experimental results on IWSLT and WMT data show improvements in translation quality of up to 0.7% BLEU and 1.0% TER.