John Ortega


2024

pdf bib
FINDINGS OF THE IWSLT 2024 EVALUATION CAMPAIGN
Ibrahim Said Ahmad | Antonios Anastasopoulos | Ondřej Bojar | Claudia Borg | Marine Carpuat | Roldano Cattoni | Mauro Cettolo | William Chen | Qianqian Dong | Marcello Federico | Barry Haddow | Dávid Javorský | Mateusz Krubiński | Tsz Kim Lam | Xutai Ma | Prashant Mathur | Evgeny Matusov | Chandresh Maurya | John McCrae | Kenton Murray | Satoshi Nakamura | Matteo Negri | Jan Niehues | Xing Niu | Atul Kr. Ojha | John Ortega | Sara Papi | Peter Polák | Adam Pospíšil | Pavel Pecina | Elizabeth Salesky | Nivedita Sethiya | Balaram Sarkar | Jiatong Shi | Claytone Sikasote | Matthias Sperber | Sebastian Stüker | Katsuhito Sudoh | Brian Thompson | Alex Waibel | Shinji Watanabe | Patrick Wilken | Petr Zemánek | Rodolfo Zevallos
Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024)

This paper reports on the shared tasks organized by the 21st IWSLT Conference. The shared tasks address 7 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, dialect and low-resource speech translation, and Indic languages. The shared tasks attracted 17 teams whose submissions are documented in 27 system papers. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.

pdf bib
Predicting Anchored Text from Translation Memories for Machine Translation Using Deep Learning Methods
Richard Yue | John Ortega
Proceedings of the 16th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)

Translation memories (TMs) are the backbone for professional translation tools called computer-aided translation (CAT) tools. In order to perform a translation using a CAT tool, a translator uses the TM to gather translations similar to the desired segment to translate (s’). Many CAT tools offer a fuzzy-match algorithm to locate segments (s) in the TM that are close in distance to s’. After locating two similar segments, the CAT tool will present parallel segments (s, t) that contain one segment in the source language along with its translation in the target language. Additionally, CAT tools contain fuzzy-match repair (FMR) techniques that will automatically use the parallel segments from the TM to create new TM entries containing a modified version of the original with the idea in mind that it will be the translation of s’. Most FMR techniques use machine translation as a way of ‘repairing’ those words that have to be modified. In this article, we show that for a large part of those words which are anchored, we can use other techniques that are based on machine learning approaches such as Word2Vec. BERT, and even ChatGPT. Specifically, we show that for anchored words that follow the continuous bag-of-words (CBOW) paradigm, Word2Vec, BERT, and GPT-4 can be used to achieve similar and, for some cases, better results than neural machine translation for translating anchored words from French to English.

pdf bib
On Translating Technical Terminology: A Translation Workflow for Machine-Translated Acronyms
Richard Yue | John Ortega | Kenneth Church
Proceedings of the 16th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)

The typical workflow for a professional translator to translate a document from its source language (SL) to a target language (TL) is not always focused on what many language models in natural language processing (NLP) do - predict the next word in a series of words. While high-resource languages like English and French are reported to achieve near human parity using common metrics for measurement such as BLEU and COMET, we find that an important step is being missed: the translation of technical terms, specifically acronyms. Some state-of-the art machine translation systems like Google Translate which are publicly available can be erroneous when dealing with acronyms - as much as 50% in our findings. This article addresses acronym disambiguation for MT systems by proposing an additional step to the SL-TL (FR-EN) translation workflow where we first offer a new acronym corpus for public consumption and then experiment with a search-based thresholding algorithm that achieves nearly 10% increase when compared to Google Translate and OpusMT.

2022

pdf bib
CLPT: A Universal Annotation Scheme and Toolkit for Clinical Language Processing
Saranya Krishnamoorthy | Yanyi Jiang | William Buchanan | Ayush Singh | John Ortega
Proceedings of the 4th Clinical Natural Language Processing Workshop

With the abundance of natural language processing (NLP) frameworks and toolkits being used in the clinical arena, a new challenge has arisen - how do technologists collaborate across several projects in an easy way? Private sector companies are usually not willing to share their work due to intellectual property rights and profit-bearing decisions. Therefore, the annotation schemes and toolkits that they use are rarely shared with the wider community. We present the clinical language pipeline toolkit (CLPT) and its corresponding annotation scheme called the CLAO (Clinical Language Annotation Object) with the aim of creating a way to share research results and other efforts through a software solution. The CLAO is a unified annotation scheme for clinical technology processing (CTP) projects that forms part of the CLPT and is more reliable than previous standards such as UIMA, BioC, and cTakes for annotation searches, insertions, and deletions. Additionally, it offers a standardized object that can be exchanged through an API that the authors release publicly for CTP project inclusion.

pdf bib
Introducing QuBERT: A Large Monolingual Corpus and BERT Model for Southern Quechua
Rodolfo Zevallos | John Ortega | William Chen | Richard Castro | Núria Bel | Cesar Yoshikawa | Renzo Venturas | Hilario Aradiel | Nelsi Melgarejo
Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing

The lack of resources for languages in the Americas has proven to be a problem for the creation of digital systems such as machine translation, search engines, chat bots, and more. The scarceness of digital resources for a language causes a higher impact on populations where the language is spoken by millions of people. We introduce the first official large combined corpus for deep learning of an indigenous South American low-resource language spoken by millions called Quechua. Specifically, our curated corpus is created from text gathered from the southern region of Peru where a dialect of Quechua is spoken that has not traditionally been used for digital systems as a target dialect in the past. In order to make our work repeatable by others, we also offer a public, pre-trained, BERT model called QuBERT which is the largest linguistic model ever trained for any Quechua type, not just the southern region dialect. We furthermore test our corpus and its corresponding BERT model on two major tasks: (1) named-entity recognition (NER) and (2) part-of-speech (POS) tagging by using state-of-the-art techniques where we achieve results comparable to other work on higher-resource languages. In this article, we describe the methodology, challenges, and results from the creation of QuBERT which is on par with other state-of-the-art multilingual models for natural language processing achieving between 71 and 74% F1 score on NER and 84–87% on POS tasks.

pdf bib
AmericasNLI: Evaluating Zero-shot Natural Language Understanding of Pretrained Multilingual Models in Truly Low-resource Languages
Abteen Ebrahimi | Manuel Mager | Arturo Oncevay | Vishrav Chaudhary | Luis Chiruzzo | Angela Fan | John Ortega | Ricardo Ramos | Annette Rios | Ivan Vladimir Meza Ruiz | Gustavo Giménez-Lugo | Elisabeth Mager | Graham Neubig | Alexis Palmer | Rolando Coto-Solano | Thang Vu | Katharina Kann
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Pretrained multilingual models are able to perform cross-lingual transfer in a zero-shot setting, even for languages unseen during pretraining. However, prior work evaluating performance on unseen languages has largely been limited to low-level, syntactic tasks, and it remains unclear if zero-shot learning of high-level, semantic tasks is possible for unseen languages. To explore this question, we present AmericasNLI, an extension of XNLI (Conneau et al., 2018) to 10 Indigenous languages of the Americas. We conduct experiments with XLM-R, testing multiple zero-shot and translation-based approaches. Additionally, we explore model adaptation via continued pretraining and provide an analysis of the dataset by considering hypothesis-only models. We find that XLM-R’s zero-shot performance is poor for all 10 languages, with an average performance of 38.48%. Continued pretraining offers improvements, with an average accuracy of 43.85%. Surprisingly, training on poorly translated data by far outperforms all other methods with an accuracy of 49.12%.

pdf bib
Findings of the IWSLT 2022 Evaluation Campaign
Antonios Anastasopoulos | Loïc Barrault | Luisa Bentivogli | Marcely Zanon Boito | Ondřej Bojar | Roldano Cattoni | Anna Currey | Georgiana Dinu | Kevin Duh | Maha Elbayad | Clara Emmanuel | Yannick Estève | Marcello Federico | Christian Federmann | Souhir Gahbiche | Hongyu Gong | Roman Grundkiewicz | Barry Haddow | Benjamin Hsu | Dávid Javorský | Vĕra Kloudová | Surafel Lakew | Xutai Ma | Prashant Mathur | Paul McNamee | Kenton Murray | Maria Nǎdejde | Satoshi Nakamura | Matteo Negri | Jan Niehues | Xing Niu | John Ortega | Juan Pino | Elizabeth Salesky | Jiatong Shi | Matthias Sperber | Sebastian Stüker | Katsuhito Sudoh | Marco Turchi | Yogesh Virkar | Alexander Waibel | Changhan Wang | Shinji Watanabe
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

The evaluation campaign of the 19th International Conference on Spoken Language Translation featured eight shared tasks: (i) Simultaneous speech translation, (ii) Offline speech translation, (iii) Speech to speech translation, (iv) Low-resource speech translation, (v) Multilingual speech translation, (vi) Dialect speech translation, (vii) Formality control for speech translation, (viii) Isometric speech translation. A total of 27 teams participated in at least one of the shared tasks. This paper details, for each shared task, the purpose of the task, the data that were released, the evaluation metrics that were applied, the submissions that were received and the results that were achieved.

pdf bib
ON-TRAC Consortium Systems for the IWSLT 2022 Dialect and Low-resource Speech Translation Tasks
Marcely Zanon Boito | John Ortega | Hugo Riguidel | Antoine Laurent | Loïc Barrault | Fethi Bougares | Firas Chaabani | Ha Nguyen | Florentin Barbier | Souhir Gahbiche | Yannick Estève
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

This paper describes the ON-TRAC Consortium translation systems developed for two challenge tracks featured in the Evaluation Campaign of IWSLT 2022: low-resource and dialect speech translation. For the Tunisian Arabic-English dataset (low-resource and dialect tracks), we build an end-to-end model as our joint primary submission, and compare it against cascaded models that leverage a large fine-tuned wav2vec 2.0 model for ASR. Our results show that in our settings pipeline approaches are still very competitive, and that with the use of transfer learning, they can outperform end-to-end models for speech translation (ST). For the Tamasheq-French dataset (low-resource track) our primary submission leverages intermediate representations from a wav2vec 2.0 model trained on 234 hours of Tamasheq audio, while our contrastive model uses a French phonetic transcription of the Tamasheq audio as input in a Conformer speech translation architecture jointly trained on automatic speech recognition, ST and machine translation losses. Our results highlight that self-supervised models trained on smaller sets of target data are more effective to low-resource end-to-end ST fine-tuning, compared to large off-the-shelf models. Results also illustrate that even approximate phonetic transcriptions can improve ST scores.

2021

pdf bib
Findings of the AmericasNLP 2021 Shared Task on Open Machine Translation for Indigenous Languages of the Americas
Manuel Mager | Arturo Oncevay | Abteen Ebrahimi | John Ortega | Annette Rios | Angela Fan | Ximena Gutierrez-Vasques | Luis Chiruzzo | Gustavo Giménez-Lugo | Ricardo Ramos | Ivan Vladimir Meza Ruiz | Rolando Coto-Solano | Alexis Palmer | Elisabeth Mager-Hois | Vishrav Chaudhary | Graham Neubig | Ngoc Thang Vu | Katharina Kann
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas

This paper presents the results of the 2021 Shared Task on Open Machine Translation for Indigenous Languages of the Americas. The shared task featured two independent tracks, and participants submitted machine translation systems for up to 10 indigenous languages. Overall, 8 teams participated with a total of 214 submissions. We provided training sets consisting of data collected from various sources, as well as manually translated sentences for the development and test sets. An official baseline trained on this data was also provided. Team submissions featured a variety of architectures, including both statistical and neural models, and for the majority of languages, many teams were able to considerably improve over the baseline. The best performing systems achieved 12.97 ChrF higher than baseline, when averaged across languages.

pdf bib
Proceedings of the 4th Workshop on Technologies for MT of Low Resource Languages (LoResMT2021)
John Ortega | Atul Kr. Ojha | Katharina Kann | Chao-Hong Liu
Proceedings of the 4th Workshop on Technologies for MT of Low Resource Languages (LoResMT2021)

pdf bib
Findings of the LoResMT 2021 Shared Task on COVID and Sign Language for Low-resource Languages
Atul Kr. Ojha | Chao-Hong Liu | Katharina Kann | John Ortega | Sheetal Shatam | Theodorus Fransen
Proceedings of the 4th Workshop on Technologies for MT of Low Resource Languages (LoResMT2021)

We present the findings of the LoResMT 2021 shared task which focuses on machine translation (MT) of COVID-19 data for both low-resource spoken and sign languages. The organization of this task was conducted as part of the fourth workshop on technologies for machine translation of low resource languages (LoResMT). Parallel corpora is presented and publicly available which includes the following directions: English↔Irish, English↔Marathi, and Taiwanese Sign language↔Traditional Chinese. Training data consists of 8112, 20933 and 128608 segments, respectively. There are additional monolingual data sets for Marathi and English that consist of 21901 segments. The results presented here are based on entries from a total of eight teams. Three teams submitted systems for English↔Irish while five teams submitted systems for English↔Marathi. Unfortunately, there were no systems submissions for the Taiwanese Sign language↔Traditional Chinese task. Maximum system performance was computed using BLEU and follow as 36.0 for English–Irish, 34.6 for Irish–English, 24.2 for English–Marathi, and 31.3 for Marathi–English.

2020

pdf bib
Proceedings of the 3rd Workshop on Technologies for MT of Low Resource Languages
Alina Karakanta | Atul Kr. Ojha | Chao-Hong Liu | Jade Abbott | John Ortega | Jonathan Washington | Nathaniel Oco | Surafel Melaku Lakew | Tommi A Pirinen | Valentin Malykh | Varvara Logacheva | Xiaobing Zhao
Proceedings of the 3rd Workshop on Technologies for MT of Low Resource Languages

2019

pdf bib
Improving Translations by Combining Fuzzy-Match Repair with Automatic Post-Editing
John Ortega | Felipe Sánchez-Martínez | Marco Turchi | Matteo Negri
Proceedings of Machine Translation Summit XVII: Research Track

2018

pdf bib
A Comparison of Machine Translation Paradigms for Use in Black-Box Fuzzy-Match Repair
Rebecca Knowles | John Ortega | Philipp Koehn
Proceedings of the AMTA 2018 Workshop on Translation Quality Estimation and Automatic Post-Editing

pdf bib
Using Morphemes from Agglutinative Languages like Quechua and Finnish to Aid in Low-Resource Translation
John Ortega | Krishnan Pillaipakkamnatt
Proceedings of the AMTA 2018 Workshop on Technologies for MT of Low Resource Languages (LoResMT 2018)

2016

pdf bib
Fuzzy-match repair using black-box machine translation systems: what can be expected?
John Ortega | Felipe Sánchez-Martínez | Mikel Forcada
Conferences of the Association for Machine Translation in the Americas: MT Researchers' Track

Computer-aided translation (CAT) tools often use a translation memory (TM) as the key resource to assist translators. A TM contains translation units (TU) which are made up of source and target language segments; translators use the target segments in the TU suggested by the CAT tool by converting them into the desired translation. Proposals from TMs could be made more useful by using techniques such as fuzzy-match repair (FMR) which modify words in the target segment corresponding to mismatches identified in the source segment. Modifications in the target segment are done by translating the mismatched source sub-segments using an external source of bilingual information (SBI) and applying the translations to the corresponding positions in the target segment. Several combinations of translated sub-segments can be applied to the target segment which can produce multiple repair candidates. We provide a formal algorithmic description of a method that is capable of using any SBI to generate all possible fuzzy-match repairs and perform an oracle evaluation on three different language pairs to ascertain the potential of the method to improve translation productivity. Using DGT-TM translation memories and the machine system Apertium as the single source to build repair operators in three different language pairs, we show that the best repaired fuzzy matches are consistently closer to reference translations than either machine-translated segments or unrepaired fuzzy matches.
Search
Co-authors