Instruction tuning has emerged as a powerful technique, significantly boosting zero-shot performance on unseen tasks. While recent work has explored cross-lingual generalization by applying instruction tuning to multilingual models, previous studies have primarily focused on English, with a limited exploration of non-English tasks. For in-depth exploration of cross-lingual generalization in instruction tuning, we perform instruction tuning individually for two distinct language meta-datasets. Subsequently, we assess the performance on unseen tasks in the language different from the one used for training. To facilitate this investigation, we introduce a novel non-English meta-dataset named “KORANI” (Korean Natural Instruction), comprising 51 Korean benchmarks. Moreover, we design cross-lingual templates to mitigate discrepancies in language and instruction-format of the template between training and inference within the cross-lingual setting. Our experiments reveal consistent improvements through cross-lingual generalization in both English and Korean, outperforming baseline by average scores of 20.7% and 13.6%, respectively. Remarkably, these enhancements are comparable to those achieved by mono-lingual instruction tuning and even surpass them in some tasks. The result underscores the significance of relevant data acquisition across languages over linguistic congruence with unseen tasks during instruction tuning.
Recent studies have demonstrated significant improvements in selection tasks, and a considerable portion of this success is attributed to incorporating informative negative samples during training. While traditional methods for constructing hard negatives provide meaningful supervision, they depend on static samples that do not evolve during training, leading to sub-optimal performance. Dynamic hard negative sampling addresses this limitation by continuously adapting to the model’s changing state throughout training. However, the high computational demands of this method restrict its applicability to certain model architectures. To overcome these challenges, we introduce an efficient dynamic hard negative sampling (EDHNS). EDHNS enhances efficiency by pre-filtering easily discriminable negatives, thereby reducing the number of candidates the model needs to compute during training. Additionally, it excludes question-candidate pairs where the model already exhibits high confidence from loss computations, further reducing training time. These approaches maintain learning quality while minimizing computation and streamlining the training process. Extensive experiments on DSTC9, DSTC10, Ubuntu, and E-commerce benchmarks demonstrate that EDHNS significantly outperforms baseline models, proving its effectiveness in dialogue selection tasks.
In task-oriented dialogue (TOD) systems designed to aid users accomplish specific goals in one or more domains, the agent retrieves entities that satisfy user constraints from the database. However, when multiple database search results exist, an ambiguity occurs regarding which results to select and present to the user. Existing TOD systems handle this ambiguity by randomly selecting one or few results and presenting their names to the user. However, in a real scenario, users do not always accept a randomly recommended entity, and users should have access to more comprehensive information about the search results. To address this limitation, we propose a novel task called Comparison-Based database search Ambiguity handling (CBA), which handles ambiguity in database search results by comparing the properties of multiple entities to enable users to choose according to their preferences. Accordingly, we introduce a new framework for automatically collecting high-quality dialogue data along with the Disambiguating Schema-guided Dialogue (DSD) dataset, an augmented version of the SGD dataset. Experimental studies on the DSD dataset demonstrate that training baseline models with the dataset effectively address the CBA task. Our dataset and code will be publicized.
The goal of DSTC11 track 5 is to build task-oriented dialogue systems that can effectively utilize external knowledge sources such as FAQs and reviews. This year’s challenge differs from previous ones as it includes subjective knowledge snippets and requires multiple snippets for a single turn. We propose a pipeline system for the challenge focusing on entity tracking, knowledge selection and response generation. Specifically, we devise a novel heuristic to ensemble the outputs from the rule-based method and neural model for entity tracking and knowledge selection. We also leverage metadata information in the knowledge source to handle fine-grained user queries. Our approach achieved the first place in objective evaluation and the third place in human evaluation of DSTC11 track 5.
Despite the recent advances in dialogue state tracking (DST), the joint goal accuracy (JGA) of the existing methods on MultiWOZ 2.1 still remains merely 60%. In our preliminary error analysis, we find that beam search produces a pool of candidates that is likely to include the correct dialogue state. Motivated by this observation, we introduce a novel framework, called BREAK (Beam search and RE-rAnKing), that achieves outstanding performance on DST. BREAK performs DST in two stages: (i) generating k-best dialogue state candidates with beam search and (ii) re-ranking the candidates to select the correct dialogue state. This simple yet powerful framework shows state-of-the-art performance on all versions of MultiWOZ and M2M datasets. Most notably, we push the joint goal accuracy to 80-90% on MultiWOZ 2.1-2.4, which is an improvement of 23.6%, 26.3%, 21.7%, and 10.8% over the previous best-performing models, respectively. The data and code will be available at https://github.com/tony-won/DST-BREAK
Language Models (LMs) become outdated as the world changes; they often fail to perform tasks requiring recent factual information which was absent or different during training, a phenomenon called temporal misalignment. This is especially a challenging problem because the research community still lacks a coherent dataset for assessing the adaptability of LMs to frequently-updated knowledge corpus such as Wikipedia. To this end, we introduce TemporalWiki, a lifelong benchmark for ever-evolving LMs that utilizes the difference between consecutive snapshots of English Wikipedia and English Wikidata for training and evaluation, respectively. The benchmark hence allows researchers to periodically track an LM’s ability to retain previous knowledge and acquire updated/new knowledge at each point in time. We also find that training an LM on the diff data through continual learning methods achieves similar or better perplexity than on the entire snapshot in our benchmark with 12 times less computational cost, which verifies that factual knowledge in LMs can be safely updated with minimal training data via continual learning.
In the automatic evaluation of generative question answering (GenQA) systems, it is difficult to assess the correctness of generated answers due to the free-form of the answer. Especially, widely used n-gram similarity metrics often fail to discriminate the incorrect answers since they equally consider all of the tokens. To alleviate this problem, we propose KPQA metric, a new metric for evaluating the correctness of GenQA. Specifically, our new metric assigns different weights to each token via keyphrase prediction, thereby judging whether a generated answer sentence captures the key meaning of the reference answer. To evaluate our metric, we create high-quality human judgments of correctness on two GenQA datasets. Using our human-evaluation datasets, we show that our proposed metric has a significantly higher correlation with human judgments than existing metrics in various datasets. Code for KPQA-metric will be available at https://github.com/hwanheelee1993/KPQA.
Even though BERT has achieved successful performance improvements in various supervised learning tasks, BERT is still limited by repetitive inferences on unsupervised tasks for the computation of contextual language representations. To resolve this limitation, we propose a novel deep bidirectional language model called a Transformer-based Text Autoencoder (T-TA). The T-TA computes contextual language representations without repetition and displays the benefits of a deep bidirectional architecture, such as that of BERT. In computation time experiments in a CPU environment, the proposed T-TA performs over six times faster than the BERT-like model on a reranking task and twelve times faster on a semantic similarity task. Furthermore, the T-TA shows competitive or even better accuracies than those of BERT on the above tasks. Code is available at https://github.com/joongbo/tta.
In this paper, we propose a novel end-to-end neural architecture for ranking candidate answers, that adapts a hierarchical recurrent neural network and a latent topic clustering module. With our proposed model, a text is encoded to a vector representation from an word-level to a chunk-level to effectively capture the entire meaning. In particular, by adapting the hierarchical structure, our model shows very small performance degradations in longer text comprehension while other state-of-the-art recurrent neural network models suffer from it. Additionally, the latent topic clustering module extracts semantic information from target samples. This clustering module is useful for any text related tasks by allowing each data sample to find its nearest topic cluster, thus helping the neural network model analyze the entire data. We evaluate our models on the Ubuntu Dialogue Corpus and consumer electronic domain question answering dataset, which is related to Samsung products. The proposed model shows state-of-the-art results for ranking question-answer pairs.