Jooyoung Lee


2024

pdf bib
Can Small Language Models Help Large Language Models Reason Better?: LM-Guided Chain-of-Thought
Jooyoung Lee | Fan Yang | Thanh Tran | Qian Hu | Emre Barut | Kai-Wei Chang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

We introduce a novel framework, LM-Guided CoT, that leverages a lightweight (i.e., <1B) language model (LM) for guiding a black-box large (i.e., >10B) LM in reasoning tasks. Specifically, the lightweight LM first generates a rationale for each input instance. The Frozen large LM is then prompted to predict a task output based on the rationale generated by the lightweight LM. Our approach is resource-efficient in the sense that it only requires training the lightweight LM. We optimize the model through 1) knowledge distillation and 2) reinforcement learning from rationale-oriented and task-oriented reward signals. We assess our method with multi-hop extractive question answering (QA) benchmarks, HotpotQA, and 2WikiMultiHopQA. Experimental results show that our approach outperforms all baselines regarding answer prediction accuracy. We also find that reinforcement learning helps the model to produce higher-quality rationales with improved QA performance.

2023

pdf bib
Fighting Fire with Fire: The Dual Role of LLMs in Crafting and Detecting Elusive Disinformation
Jason Lucas | Adaku Uchendu | Michiharu Yamashita | Jooyoung Lee | Shaurya Rohatgi | Dongwon Lee
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Recent ubiquity and disruptive impacts of large language models (LLMs) have raised concerns about their potential to be misused (*.i.e, generating large-scale harmful and misleading content*). To combat this emerging risk of LLMs, we propose a novel “***Fighting Fire with Fire***” (F3) strategy that harnesses modern LLMs’ generative and emergent reasoning capabilities to counter human-written and LLM-generated disinformation. First, we leverage GPT-3.5-turbo to synthesize authentic and deceptive LLM-generated content through paraphrase-based and perturbation-based prefix-style prompts, respectively. Second, we apply zero-shot in-context semantic reasoning techniques with cloze-style prompts to discern genuine from deceptive posts and news articles. In our extensive experiments, we observe GPT-3.5-turbo’s zero-shot superiority for both in-distribution and out-of-distribution datasets, where GPT-3.5-turbo consistently achieved accuracy at 68-72%, unlike the decline observed in previous customized and fine-tuned disinformation detectors. Our codebase and dataset are available at https://github.com/mickeymst/F3.

2022

pdf bib
Perturbations in the Wild: Leveraging Human-Written Text Perturbations for Realistic Adversarial Attack and Defense
Thai Le | Jooyoung Lee | Kevin Yen | Yifan Hu | Dongwon Lee
Findings of the Association for Computational Linguistics: ACL 2022

We proposes a novel algorithm, ANTHRO, that inductively extracts over 600K human-written text perturbations in the wild and leverages them for realistic adversarial attack. Unlike existing character-based attacks which often deductively hypothesize a set of manipulation strategies, our work is grounded on actual observations from real-world texts. We find that adversarial texts generated by ANTHRO achieve the best trade-off between (1) attack success rate, (2) semantic preservation of the original text, and (3) stealthiness–i.e. indistinguishable from human writings hence harder to be flagged as suspicious. Specifically, our attacks accomplished around 83% and 91% attack success rates on BERT and RoBERTa, respectively. Moreover, it outperformed the TextBugger baseline with an increase of 50% and 40% in terms of semantic preservation and stealthiness when evaluated by both layperson and professional human workers. ANTHRO can further enhance a BERT classifier’s performance in understanding different variations of human-written toxic texts via adversarial training when compared to the Perspective API.