Nous présentons une extension aux analyseurs syntaxiques en constituants neuronaux modernes qui consiste à doter les constituants potentiels d’une représentation vectorielle affinée en fonction du contexte par plusieurs applications successives d’un module de type transformer efficace (pooling par attention puis transformation non-linéaire).Nous appliquons cette extension à l’analyseur CRF de Yu Zhang & Al.Expérimentalement, nous testons cette extension sur deux corpus (PTB et FTB) avec ou sans vecteurs de mots dynamiques: cette extension permet d’avoir un gain constant dans toutes les configurations.
We present a novel method for higher-order dependency parsing which takes advantage of the general form of score functions written as arc-polynomials, a general framework which encompasses common higher-order score functions, and includes new ones. This method is based on non-linear optimization techniques, namely coordinate ascent and genetic search where we iteratively update a candidate parse. Updates are formulated as gradient-based operations, and are efficiently computed by auto-differentiation libraries. Experiments show that this method obtains results matching the recent state-of-the-art second order parsers on three standard datasets.
We propose a generative model for text generation, which exhibits disentangled latent representations of syntax and semantics. Contrary to previous work, this model does not need syntactic information such as constituency parses, or semantic information such as paraphrase pairs. Our model relies solely on the inductive bias found in attention-based architectures such as Transformers. In the attention of Transformers, keys handle information selection while values specify what information is conveyed. Our model, dubbed QKVAE, uses Attention in its decoder to read latent variables where one latent variable infers keys while another infers values. We run experiments on latent representations and experiments on syntax/semantics transfer which show that QKVAE displays clear signs of disentangled syntax and semantics. We also show that our model displays competitive syntax transfer capabilities when compared to supervised models and that comparable supervised models need a fairly large amount of data (more than 50K samples) to outperform it on both syntactic and semantic transfer. The code for our experiments is publicly available.
Like most natural language understanding and generation tasks, state-of-the-art models for summarization are transformer-based sequence-to-sequence architectures that are pretrained on large corpora. While most existing models focus on English, Arabic remains understudied. In this paper we propose AraBART, the first Arabic model in which the encoder and the decoder are pretrained end-to-end, based on BART. We show that AraBART achieves the best performance on multiple abstractive summarization datasets, outperforming strong baselines including a pretrained Arabic BERT-based model, multilingual BART, Arabic T5, and a multilingual T5 model. AraBART is publicly available.
Semi-Supervised Variational Autoencoders (SSVAEs) are widely used models for data efficient learning. In this paper, we question the adequacy of the standard design of sequence SSVAEs for the task of text classification as we exhibit two sources of overcomplexity for which we provide simplifications. These simplifications to SSVAEs preserve their theoretical soundness while providing a number of practical advantages in the semi-supervised setup where the result of training is a text classifier. These simplifications are the removal of (i) the Kullback-Liebler divergence from its objective and (ii) the fully unobserved latent variable from its probabilistic model. These changes relieve users from choosing a prior for their latent variables, make the model smaller and faster, and allow for a better flow of information into the latent variables. We compare the simplified versions to standard SSVAEs on 4 text classification tasks. On top of the above-mentioned simplification, experiments show a speed-up of 26%, while keeping equivalent classification scores. The code to reproduce our experiments is public.
We review two features of mixture of experts (MoE) models which we call averaging and clustering effects in the context of graph-based dependency parsers learned in a supervised probabilistic framework. Averaging corresponds to the ensemble combination of parsers and is responsible for variance reduction which helps stabilizing and improving parsing accuracy. Clustering describes the capacity of MoE models to give more credit to experts believed to be more accurate given an input. Although promising, this is difficult to achieve, especially without additional data. We design an experimental set-up to study the impact of these effects. Whereas averaging is always beneficial, clustering requires good initialization and stabilization techniques, but its advantages over mere averaging seem to eventually vanish when enough experts are present. As a by product, we show how this leads to state-of-the-art results on the PTB and the CoNLL09 Chinese treebank, with low variance across experiments.
Cet article présente notre participation à l’édition 2020 du Défi Fouille de Textes DEFT 2020 et plus précisément aux deux tâches ayant trait à la similarité entre phrases. Dans notre travail nous nous sommes intéressé à deux questions : celle du choix de la mesure du similarité d’une part et celle du choix des opérandes sur lesquelles se porte la mesure de similarité. Nous avons notamment étudié la question de savoir s’il fallait utiliser des mots ou des chaînes de caractères (mots ou non-mots). Nous montrons d’une part que la similarité de Bray-Curtis peut être plus efficace et surtout plus stable que la similarité cosinus et d’autre part que le calcul de similarité sur des chaînes de caractères est plus efficace que le même calcul sur des mots.
In this paper we present a parsing model for projective dependency trees which takes advantage of the existence of complementary dependency annotations which is the case in Arabic, with the availability of CATiB and UD treebanks. Our system performs syntactic parsing according to both annotation types jointly as a sequence of arc-creating operations, and partially created trees for one annotation are also available to the other as features for the score function. This method gives error reduction of 9.9% on CATiB and 6.1% on UD compared to a strong baseline, and ablation tests show that the main contribution of this reduction is given by sharing tree representation between tasks, and not simply sharing BiLSTM layers as is often performed in NLP multitask systems.
We present a new method for transition-based parsing where a solution is a pair made of a dependency tree and a derivation graph describing the construction of the former. From this representation we are able to derive an efficient parsing algorithm and design a neural network that learns vertex representations and arc scores. Experimentally, although we only train via local classifiers, our approach improves over previous arc-hybrid systems and reach state-of-the-art parsing accuracy.
Dans cet article, nous présentons nos méthodes pour les tâches d’indexation et d’appariements du Défi Fouile de Textes (Deft) 2019. Pour la taĉhe d’indexation nous avons testé deux méthodes, une fondée sur l’appariemetn préalable des documents du jeu de tset avec les documents du jeu d’entraînement et une autre méthode fondée sur l’annotation terminologique. Ces méthodes ont malheureusement offert des résultats assez faible. Pour la tâche d’appariement, nous avons dévellopé une méthode sans apprentissage fondée sur des similarités de chaînes de caractères ainsi qu’une méthode exploitant des réseaux siamois. Là encore les résultats ont été plutôt décevant même si la méthode non supervisée atteint un score plutôt honorable pour une méthode non-supervisée : 62% .
Dans cet article, nous présentons notre contribution au Défi Fouille de Textes 2018 au travers de trois méthodes originales pour la classification thématique et la détection de polarité dans des tweets en français. Nous y avons ajouté un système de vote. Notre première méthode est fondée sur des lexiques (mots et emojis), les n-grammes de caractères et un classificateur à vaste marge (ou SVM). tandis que les deux autres sont des méthodes endogènes fondées sur l’extraction de caractéristiques au grain caractères : un modèle à mémoire à court-terme persistante (ou BiLSTM pour Bidirectionnal Long Short-Term Memory) et perceptron multi-couche d’une part et un modèle de séquences de caractères fermées fréquentes et classificateur SVM d’autre part. Le BiLSTM a produit de loin les meilleurs résultats puisqu’il a obtenu la première place sur la tâche 1, classification binaire de tweets selon qu’ils traitent ou non des transports, et la troisième place sur la tâche 2, classification de la polarité en 4 classes. Ce résultat est d’autant plus intéressant que la méthode proposée est faiblement paramétrique, totalement endogène et qu’elle n’implique aucun pré-traitement.
We present a new method for the joint task of tagging and non-projective dependency parsing. We demonstrate its usefulness with an application to discontinuous phrase-structure parsing where decoding lexicalized spines and syntactic derivations is performed jointly. The main contributions of this paper are (1) a reduction from joint tagging and non-projective dependency parsing to the Generalized Maximum Spanning Arborescence problem, and (2) a novel decoding algorithm for this problem through Lagrangian relaxation. We evaluate this model and obtain state-of-the-art results despite strong independence assumptions.
Nous présentons une architecture pour l’analyse syntaxique en deux étapes. Dans un premier temps un analyseur syntagmatique construit, pour chaque phrase, une liste d’analyses qui sont converties en arbres de dépendances. Ces arbres sont ensuite réévalués par un réordonnanceur discriminant. Cette méthode permet de prendre en compte des informations auxquelles l’analyseur n’a pas accès, en particulier des annotations fonctionnelles. Nous validons notre approche par une évaluation sur le corpus arboré de Paris 7. La seconde étape permet d’améliorer significativement la qualité des analyses retournées, quelle que soit la métrique utilisée.
Nous proposons un algorithme d’analyse pour les grammaires d’interaction qui utilise le cadre formel de l’analyse déductive. Cette approche donne un point de vue nouveau sur ce problème puisque les méthodes précédentes réduisaient ce dernier à la réécriture de graphes et utilisaient des techniques de résolution de contraintes. D’autre part, cette présentation permet de décrire le processus de manière standard et d’exhiber les sources d’indéterminisme qui rendent ce problème difficile.
Nous définissons un formalisme, les grammaires rationnelles d’arbres avec traits, et une traduction des grammaires d’arbres adjoints avec traits vers ce nouveau formalisme. Cette traduction préserve les structures de dérivation de la grammaire d’origine en tenant compte de l’unification de traits. La construction peut être appliquée aux réalisateurs de surface qui se fondent sur les arbres de dérivation.
Dans cet article, nous présentons un outil permettant de produire automatiquement des ressources linguistiques, en l’occurence des grammaires. Cet outil se caractérise par son extensibilité, tant du point de vue des formalismes grammaticaux supportés (grammaires d’arbres adjoints et grammaires d’interaction à l’heure actuelle), que de son architecture modulaire, qui facilite l’intégration de nouveaux modules ayant pour but de vérifier la validité des structures produites. En outre, cet outil offre un support adapté au développement de grammaires à portée sémantique.