This study explores the realm of knowledge base question answering (KBQA). KBQA is considered a challenging task, particularly in parsing intricate questions into executable logical forms. Traditional semantic parsing (SP)-based methods require extensive data annotations, which result in significant costs. Recently, the advent of few-shot in-context learning, powered by large language models (LLMs), has showcased promising capabilities. Yet, fully leveraging LLMs to parse questions into logical forms in low-resource scenarios poses a substantial challenge. To tackle these hurdles, we introduce Interactive-KBQA, a framework designed to generate logical forms through direct interaction with knowledge bases (KBs). Within this framework, we have developed three generic APIs for KB interaction. For each category of complex question, we devised exemplars to guide LLMs through the reasoning processes. Our method achieves competitive results on the WebQuestionsSP, ComplexWebQuestions, KQA Pro, and MetaQA datasets with a minimal number of examples (shots). Importantly, our approach supports manual intervention, allowing for the iterative refinement of LLM outputs. By annotating a dataset with step-wise reasoning processes, we showcase our model’s adaptability and highlight its potential for contributing significant enhancements to the field.
Dialogue state tracking (DST) aims to convert the dialogue history into dialogue states which consist of slot-value pairs. As condensed structural information memorizes all history information, the dialogue state in the previous turn is typically adopted as the input for predicting the current state by DST models. However, these models tend to keep the predicted slot values unchanged, which is defined as state momentum in this paper. Specifically, the models struggle to update slot values that need to be changed and correct wrongly predicted slot values in the previous turn. To this end, we propose MoNET to tackle state momentum via noise-enhanced training. First, the previous state of each turn in the training data is noised via replacing some of its slot values. Then, the noised previous state is used as the input to learn to predict the current state, improving the model’s ability to update and correct slot values. Furthermore, a contrastive contextmatching framework is designed to narrow the representation distance between a state and itscorresponding noised variant, which reduces the impact of noised state and makes the model better understand the dialogue history. Experimental results on MultiWOZ datasets show that MoNET outperforms previous DST methods. Ablations and analysis verify the effectiveness of MoNET in alleviating state momentum issues and improving the anti-noise ability.
High-quality data is essential for conversational recommendation systems and serves as the cornerstone of the network architecture development and training strategy design. Existing works contribute heavy human efforts to manually labeling or designing and extending recommender dialogue templates. However, they suffer from: (i) the limited number of human annotators results in datasets can hardly capture rich and large-scale cases in the real world, (ii) the limited experience and knowledge of annotators accounts for the uninformative corpus and inappropriate recommendations. In this paper, we propose a novel automatic dataset synthesis approach that can generate large-scale and high-quality recommendation dialogues through a data2text generation process, where unstructured recommendation conversations are generated from structured graphs based on user-item information from the real world. In doing so, we comprehensively exploit: (i) rich personalized user profiles from traditional recommendation datasets, (ii) rich external knowledge from knowledge graphs, and (iii) the conversation ability contained in human-to-human conversational recommendation datasets. Extensive experiments validate the benefit brought by the automatically synthesized data under low-resource scenarios, and demonstrate the promising potential to facilitate developing a more effective conversational recommendation system.
Traditional end-to-end task-oriented dialog systems first convert dialog context into belief state and action state before generating the system response. The system response performance is significantly affected by the quality of the belief state and action state. We first explore what dialog context representation is beneficial to improving the quality of the belief state and action state, which further enhances the generated response quality. To tackle our exploration, we propose Mars, an end-to-end task-oriented dialog system with two contrastive learning strategies to model the relationship between dialog context and belief/action state representations. Empirical results show dialog context representations, which are more different from semantic state representations, are more conducive to multi-turn task-oriented dialog. Moreover, our proposed Mars achieves state-of-the-art performance on the MultiWOZ 2.0, CamRest676, and CrossWOZ.
Real-world text applications often involve composing a wide range of text control operations, such as editing the text w.r.t. an attribute, manipulating keywords and structure, and generating new text of desired properties. Prior work typically learns/finetunes a language model (LM) to perform individual or specific subsets of operations. Recent research has studied combining operations in a plug-and-play manner, often with costly search or optimization in the complex sequence space. This paper proposes a new efficient approach for composable text operations in the compact latent space of text. The low-dimensionality and differentiability of the text latent vector allow us to develop an efficient sampler based on ordinary differential equations (ODEs) given arbitrary plug-in operators (e.g., attribute classifiers). By connecting pretrained LMs (e.g., GPT2) to the latent space through efficient adaption, we then decode the sampled vectors into desired text sequences. The flexible approach permits diverse control operators (sentiment, tense, formality, keywords, etc.) acquired using any relevant data from different domains. Experiments show that composing those operators within our approach manages to generate or edit high-quality text, substantially improving over previous methods in terms of generation quality and efficiency.
Few-shot dialogue state tracking (DST) is a realistic problem that trains the DST model with limited labeled data. Existing few-shot methods mainly transfer knowledge learned from external labeled dialogue data (e.g., from question answering, dialogue summarization, machine reading comprehension tasks, etc.) into DST, whereas collecting a large amount of external labeled data is laborious, and the external data may not effectively contribute to the DST-specific task. In this paper, we propose a few-shot DST framework called CSS, which Combines Self-training and Self-supervised learning methods. The unlabeled data of the DST task is incorporated into the self-training iterations, where the pseudo labels are predicted by a DST model trained on limited labeled data in advance. Besides, a contrastive self-supervised method is used to learn better representations, where the data is augmented by the dropout operation to train the model. Experimental results on the MultiWOZ dataset show that our proposed CSS achieves competitive performance in several few-shot scenarios.
Question answering requiring discrete reasoning, e.g., arithmetic computing, comparison, and counting, over knowledge is a challenging task.In this paper, we propose UniRPG, a semantic-parsing-based approach advanced in interpretability and scalability, to perform Unified discrete Reasoning over heterogeneous knowledge resources, i.e., table and text, as Program Generation. Concretely, UniRPG consists of a neural programmer and a symbolic program executor,where a program is the composition of a set of pre-defined general atomic and higher-order operations and arguments extracted from table and text.First, the programmer parses a question into a program by generating operations and copying arguments, and then, the executor derives answers from table and text based on the program.To alleviate the costly program annotation issue, we design a distant supervision approach for programmer learning, where pseudo programs are automatically constructed without annotated derivations.Extensive experiments on the TAT-QA dataset show that UniRPG achieves tremendous improvements and enhances interpretability and scalability compared with previous state-of-the-art methods, even without derivation annotation.Moreover, it achieves promising performance on the textual dataset DROP without derivation annotation.
A typical end-to-end task-oriented dialog system transfers context into dialog state, and upon which generates a response, which usually faces the problem of error propagation from both previously generated inaccurate dialog states and responses, especially in low-resource scenarios. To alleviate these issues, we propose BORT, a back and denoising reconstruction approach for end-to-end task-oriented dialog system. Squarely, to improve the accuracy of dialog states, back reconstruction is used to reconstruct the original input context from the generated dialog states since inaccurate dialog states cannot recover the corresponding input context. To enhance the denoising capability of the model to reduce the impact of error propagation, denoising reconstruction is used to reconstruct the corrupted dialog state and response. Extensive experiments conducted on MultiWOZ 2.0 and CamRest676 show the effectiveness of BORT. Furthermore, BORT demonstrates its advanced capabilities in the zero-shot domain and low-resource scenarios.
Conventional autoregressive left-to-right (L2R) sequence generation faces two issues during decoding: limited to unidirectional target sequence modeling, and constrained on strong local dependencies.To address the aforementioned problem, we propose P3LM, a probabilistically permuted prophet language model, which strengthens the modeling of bidirectional information and long token dependencies for sequence generation.Specifically, P3LM learns to generate tokens in permuted order upon an order-aware transformer decoder, as well as to generate the corresponding future N tokens with a multi-stream attention mechanism.Extensive experiments are conducted on the GLGE benchmark, which includes four datasets for summarization, two for question generation, one for conversational question answering, and one for dialog response generation, where P3LM achieves state-of-the-art results compared with strong publicly available generative pre-training methods.
Hybrid question answering (HQA) aims to answer questions over heterogeneous data, including tables and passages linked to table cells. The heterogeneous data can provide different granularity evidence to HQA models, e.t., column, row, cell, and link. Conventional HQA models usually retrieve coarse- or fine-grained evidence to reason the answer. Through comparison, we find that coarse-grained evidence is easier to retrieve but contributes less to the reasoner, while fine-grained evidence is the opposite. To preserve the advantage and eliminate the disadvantage of different granularity evidence, we propose MuGER2, a Multi-Granularity Evidence Retrieval and Reasoning approach. In evidence retrieval, a unified retriever is designed to learn the multi-granularity evidence from the heterogeneous data. In answer reasoning, an evidence selector is proposed to navigate the fine-grained evidence for the answer reader based on the learned multi-granularity evidence. Experiment results on the HybridQA dataset show that MuGER2 significantly boosts the HQA performance. Further ablation analysis verifies the effectiveness of both the retrieval and reasoning designs.
Transformer-based pre-trained models, such as BERT, have shown extraordinary success in achieving state-of-the-art results in many natural language processing applications. However, deploying these models can be prohibitively costly, as the standard self-attention mechanism of the Transformer suffers from quadratic computational cost in the input sequence length. To confront this, we propose FCA, a fine- and coarse-granularity hybrid self-attention that reduces the computation cost through progressively shortening the computational sequence length in self-attention. Specifically, FCA conducts an attention-based scoring strategy to determine the informativeness of tokens at each layer. Then, the informative tokens serve as the fine-granularity computing units in self-attention and the uninformative tokens are replaced with one or several clusters as the coarse-granularity computing units in self-attention. Experiments on the standard GLUE benchmark show that BERT with FCA achieves 2x reduction in FLOPs over original BERT with <1% loss in accuracy. We show that FCA offers a significantly better trade-off between accuracy and FLOPs compared to prior methods.
Machine reading comprehension (MRC) that requires discrete reasoning involving symbolic operations, e.g., addition, sorting, and counting, is a challenging task. According to this nature, semantic parsing-based methods predict interpretable but complex logical forms. However, logical form generation is nontrivial and even a little perturbation in a logical form will lead to wrong answers. To alleviate this issue, multi-predictor -based methods are proposed to directly predict different types of answers and achieve improvements. However, they ignore the utilization of symbolic operations and encounter a lack of reasoning ability and interpretability. To inherit the advantages of these two types of methods, we propose OPERA, an operation-pivoted discrete reasoning framework, where lightweight symbolic operations (compared with logical forms) as neural modules are utilized to facilitate the reasoning ability and interpretability. Specifically, operations are first selected and then softly executed to simulate the answer reasoning procedure. Extensive experiments on both DROP and RACENum datasets show the reasoning ability of OPERA. Moreover, further analysis verifies its interpretability.
Neural text generation models are typically trained by maximizing log-likelihood with the sequence cross entropy (CE) loss, which encourages an exact token-by-token match between a target sequence with a generated sequence. Such training objective is sub-optimal when the target sequence is not perfect, e.g., when the target sequence is corrupted with noises, or when only weak sequence supervision is available. To address the challenge, we propose a novel Edit-Invariant Sequence Loss (EISL), which computes the matching loss of a target n-gram with all n-grams in the generated sequence. EISL is designed to be robust to various noises and edits in the target sequences. Moreover, the EISL computation is essentially an approximate convolution operation with target n-grams as kernels, which is easy to implement and efficient to compute with existing libraries. To demonstrate the effectiveness of EISL, we conduct experiments on a wide range of tasks, including machine translation with noisy target sequences, unsupervised text style transfer with only weak training signals, and non-autoregressive generation with non-predefined generation order. Experimental results show our method significantly outperforms the common CE loss and other strong baselines on all the tasks. EISL has a simple API that can be used as a drop-in replacement of the CE loss: https://github.com/guangyliu/EISL.
Dialogue state tracking (DST) aims to predict the current dialogue state given the dialogue history. Existing methods generally exploit the utterances of all dialogue turns to assign value for each slot. This could lead to suboptimal results due to the information introduced from irrelevant utterances in the dialogue history, which may be useless and can even cause confusion. To address this problem, we propose LUNA, a SLot-TUrN Alignment enhanced approach. It first explicitly aligns each slot with its most relevant utterance, then further predicts the corresponding value based on this aligned utterance instead of all dialogue utterances. Furthermore, we design a slot ranking auxiliary task to learn the temporal correlation among slots which could facilitate the alignment. Comprehensive experiments are conducted on three multi-domain task-oriented dialogue datasets, MultiWOZ 2.0, MultiWOZ 2.1, and MultiWOZ 2.2. The results show that LUNA achieves new state-of-the-art results on these datasets.
Keyphrases, that concisely summarize the high-level topics discussed in a document, can be categorized into present keyphrase which explicitly appears in the source text and absent keyphrase which does not match any contiguous subsequence but is highly semantically related to the source. Most existing keyphrase generation approaches synchronously generate present and absent keyphrases without explicitly distinguishing these two categories. In this paper, a Select-Guide-Generate (SGG) approach is proposed to deal with present and absent keyphrases generation separately with different mechanisms. Specifically, SGG is a hierarchical neural network which consists of a pointing-based selector at low layer concentrated on present keyphrase generation, a selection-guided generator at high layer dedicated to absent keyphrase generation, and a guider in the middle to transfer information from selector to generator. Experimental results on four keyphrase generation benchmarks demonstrate the effectiveness of our model, which significantly outperforms the strong baselines for both present and absent keyphrases generation. Furthermore, we extend SGG to a title generation task which indicates its extensibility in natural language generation tasks.
Transformer-based pre-trained models, such as BERT, have achieved remarkable results on machine reading comprehension. However, due to the constraint of encoding length (e.g., 512 WordPiece tokens), a long document is usually split into multiple chunks that are independently read. It results in the reading field being limited to individual chunks without information collaboration for long document machine reading comprehension. To address this problem, we propose RoR, a read-over-read method, which expands the reading field from chunk to document. Specifically, RoR includes a chunk reader and a document reader. The former first predicts a set of regional answers for each chunk, which are then compacted into a highly-condensed version of the original document, guaranteeing to be encoded once. The latter further predicts the global answers from this condensed document. Eventually, a voting strategy is utilized to aggregate and rerank the regional and global answers for final prediction. Extensive experiments on two benchmarks QuAC and TriviaQA demonstrate the effectiveness of RoR for long document reading. Notably, RoR ranks 1st place on the QuAC leaderboard (https://quac.ai/) at the time of submission (May 17th, 2021).
This paper aims to enhance the few-shot relation classification especially for sentences that jointly describe multiple relations. Due to the fact that some relations usually keep high co-occurrence in the same context, previous few-shot relation classifiers struggle to distinguish them with few annotated instances. To alleviate the above relation confusion problem, we propose CTEG, a model equipped with two novel mechanisms to learn to decouple these easily-confused relations. On the one hand, an Entity -Guided Attention (EGA) mechanism, which leverages the syntactic relations and relative positions between each word and the specified entity pair, is introduced to guide the attention to filter out information causing confusion. On the other hand, a Confusion-Aware Training (CAT) method is proposed to explicitly learn to distinguish relations by playing a pushing-away game between classifying a sentence into a true relation and its confusing relation. Extensive experiments are conducted on the FewRel dataset, and the results show that our proposed model achieves comparable and even much better results to strong baselines in terms of accuracy. Furthermore, the ablation test and case study verify the effectiveness of our proposed EGA and CAT, especially in addressing the relation confusion problem.
WebQuestions and SimpleQuestions are two benchmark data-sets commonly used in recent knowledge-based question answering (KBQA) work. Most questions in them are ‘simple’ questions which can be answered based on a single relation in the knowledge base. Such data-sets lack the capability of evaluating KBQA systems on complicated questions. Motivated by this issue, we release a new data-set, namely ComplexQuestions, aiming to measure the quality of KBQA systems on ‘multi-constraint’ questions which require multiple knowledge base relations to get the answer. Beside, we propose a novel systematic KBQA approach to solve multi-constraint questions. Compared to state-of-the-art methods, our approach not only obtains comparable results on the two existing benchmark data-sets, but also achieves significant improvements on the ComplexQuestions.