Language technologies that accurately model the dynamics of events must perform commonsense reasoning. Existing work evaluating commonsense reasoning focuses on making inferences about common, everyday situations. To instead investigate the ability to model unusual, unexpected, and unlikely situations, we explore the task of uncommonsense abductive reasoning. Given a piece of context with an unexpected outcome, this task requires reasoning abductively to generate an explanation that makes the unexpected outcome more likely in the context. To this end, we curate and release a new English language corpus called UNcommonsense. We characterize the performance differences between human explainers and the best-performing large language models, finding that model-enhanced human-written explanations achieve the highest quality by trading off between specificity and diversity. Finally, we experiment with several imitation learning algorithms to train open and accessible language models on this task. When compared with the vanilla supervised fine-tuning approach, these methods consistently reduce lose rates on both common and uncommonsense abductive reasoning judged by human evaluators.
When a model is trying to gather information in an interactive setting, it benefits from asking informative questions. However, in the case of a grounded multi-turn image identification task, previous studies have been constrained to polar yes/no questions (White et al., 2021), limiting how much information the model can gain in a single turn. We present an approach that formulates more informative, open-ended questions. In doing so, we discover that off-the-shelf visual question answering (VQA) models often make presupposition errors, which standard information gain question selection methods fail to account for. To address this issue, we propose a method that can incorporate presupposition handling into both question selection and belief updates. Specifically, we use a two-stage process, where the model first filters out images which are irrelevant to a given question, then updates its beliefs about which image the user intends. Through self-play and human evaluations, we show that our method is successful in asking informative open-ended questions, increasing accuracy over the past state-of-the-art by 14%, while resulting in 48% more efficient games in human evaluations.
Comparative reasoning plays a crucial role in predicting text preferences; however, large language models (LLMs) often demonstrate inconsistencies in their reasoning, leading to incorrect preference predictions. While approaches like Chain-of-Thought improve accuracy in many settings, they struggle to consistently distinguish the similarities and differences of complex texts. We introduce SC2, a model that prompts LLMs to predict text preferences by generating structured intermediate comparisons. SC2 begins by proposing aspects for comparison, followed by generating textual comparisons under each aspect. We select consistent comparisons with a pairwise comparator that ensures each comparison of a given aspect clearly distinguishes differences between texts, significantly reducing hallucination and improving consistency. Our empirical studies across various NLP tasks, including summarization, retrieval, and automatic rating, demonstrate that SC2‘s enhanced performance in text preference prediction is significant.
Large language models (LLMs) excel at processing and generating both text and code. However, LLMs have had limited applicability in grounded task-oriented dialogue as they are difficult to steer toward task objectives and fail to handle novel grounding. We present a modular and interpretable grounded dialogue system that addresses these shortcomings by composing LLMs with a symbolic planner and grounded code execution. Our system consists of a reader and planner: the reader leverages an LLM to convert partner utterances into executable code, calling functions that perform grounding. The translated code’s output is stored to track dialogue state, while a symbolic planner determines the next appropriate response. We evaluate our system’s performance on the demanding OneCommon dialogue task, involving collaborative reference resolution on abstract images of scattered dots. Our system substantially outperforms the previous state-of-the-art, including improving task success in human evaluations from 56% to 69% in the most challenging setting.
Large language models (LLMs) excel at processing and generating text and code. However, LLMs have had limited applicability in grounded task-oriented dialogue as they are difficult to steer toward task objectives and fail to handle novel grounding. We present a modular and interpretable grounded dialogue system that addresses these shortcomings by composing LLMs with a symbolic planner and grounded code execution. Our system, consists of a reader and planner: the reader leverages an LLM to convert partner utterances into executable code, calling functions that perform grounding. The translated code’s output is stored to track dialogue state, while a symbolic planner determines the next appropriate response. We evaluate our system’s performance on the demanding OneCommon dialogue task, involving collaborative reference resolution on abstract images of scattered dots. Our system substantially outperforms the previous state-of-the-art, including improving task success in human evaluations from 56% to 69% in the most challenging setting.
Explainable multi-hop question answering (QA) not only predicts answers but also identifies rationales, i. e. subsets of input sentences used to derive the answers. Existing methods rely on supervision for both answers and rationales. This problem has been extensively studied under the supervised setting, where both answer and rationale annotations are given. Because rationale annotations are expensive to collect and not always available, recent efforts have been devoted to developing methods that do not rely on supervision for rationales. However, such methods have limited capacities in modeling interactions between sentences, let alone reasoning across multiple documents. This work proposes a principled, probabilistic approach for training explainable multi-hop QA systems without rationale supervision. Our approach performs multi-hop reasoning by explicitly modeling rationales as sets, enabling the model to capture interactions between documents and sentences within a document. Experimental results show that our approach is more accurate at selecting rationales than the previous methods, while maintaining similar accuracy in predicting answers.
Product matching is the task of matching a seller-listed item to an appropriate product. It is a critical task for an e-commerce platform, and the approach needs to be efficient to run in a large-scale setting. A dual encoder approach has been a common practice for product matching recently, due to its high performance and computation efficiency. In this paper, we propose a two-stage training for the dual encoder model. Stage 1 trained a dual encoder to identify the more informative training data. Stage 2 then train on the more informative data to get a better dual encoder model. This technique is a learned approach for building training data. We evaluate the retrieval-enhanced training on two different datasets: a publicly available Large-Scale Product Matching dataset and a real-world e-commerce dataset containing 47 million products. Experiment results show that our approach improved by 2% F1 on the public dataset and 9% F1 on the real-world e-commerce dataset.
Abductive reasoning aims to find plausible explanations for an event. This style of reasoning is critical for commonsense tasks where there are often multiple plausible explanations. Existing approaches for abductive reasoning in natural language processing (NLP) often rely on manually generated annotations for supervision; however, such annotations can be subjective and biased. Instead of using direct supervision, this work proposes an approach for abductive commonsense reasoning that exploits the fact that only a subset of explanations is correct for a given context. The method uses posterior regularization to enforce a mutual exclusion constraint, encouraging the model to learn the distinction between fluent explanations and plausible ones. We evaluate our approach on a diverse set of abductive reasoning datasets; experimental results show that our approach outperforms or is comparable to directly applying pretrained language models in a zero-shot manner and other knowledge-augmented zero-shot methods.
Matching a seller listed item to an appropriate product is an important step for an e-commerce platform. With the recent advancement in deep learning, there are different encoder based approaches being proposed as solution. When textual data for two products are available, cross-encoder approaches encode them jointly while bi-encoder approaches encode them separately. Since cross-encoders are computationally heavy, approaches based on bi-encoders are a common practice for this challenge. In this paper, we propose cross-encoder data annotation; a technique to annotate or refine human annotated training data for bi-encoder models using a cross-encoder model. This technique enables us to build a robust model without annotation on newly collected training data or further improve model performance on annotated training data. We evaluate the cross-encoder data annotation on the product matching task using a real-world e-commerce dataset containing 104 million products. Experimental results show that the cross-encoder data annotation improves 4% absolute accuracy when no annotation for training data is available, and 2% absolute accuracy when annotation for training data is available.
Deidentification seeks to anonymize textual data prior to distribution. Automatic deidentification primarily uses supervised named entity recognition from human-labeled data points. We propose an unsupervised deidentification method that masks words that leak personally-identifying information. The approach utilizes a specially trained reidentification model to identify individuals from redacted personal documents. Motivated by K-anonymity based privacy, we generate redactions that ensure a minimum reidentification rank for the correct profile of the document. To evaluate this approach, we consider the task of deidentifying Wikipedia Biographies, and evaluate using an adversarial reidentification metric. Compared to a set of unsupervised baselines, our approach deidentifies documents more completely while removing fewer words. Qualitatively, we see that the approach eliminates many identifying aspects that would fall outside of the common named entity based approach.
We present a grounded neural dialogue model that successfully collaborates with people in a partially-observable reference game. We focus on a setting where two agents each observe an overlapping part of a world context and need to identify and agree on some object they share. Therefore, the agents should pool their information and communicate pragmatically to solve the task. Our dialogue agent accurately grounds referents from the partner’s utterances using a structured reference resolver, conditions on these referents using a recurrent memory, and uses a pragmatic generation procedure to ensure the partner can resolve the references the agent produces. We evaluate on the OneCommon spatial grounding dialogue task (Udagawa and Aizawa 2019), involving a number of dots arranged on a board with continuously varying positions, sizes, and shades. Our agent substantially outperforms the previous state of the art for the task, obtaining a 20% relative improvement in successful task completion in self-play evaluations and a 50% relative improvement in success in human evaluations.
The hidden Markov model (HMM) is a fundamental tool for sequence modeling that cleanly separates the hidden state from the emission structure. However, this separation makes it difficult to fit HMMs to large datasets in modern NLP, and they have fallen out of use due to very poor performance compared to fully observed models. This work revisits the challenge of scaling HMMs to language modeling datasets, taking ideas from recent approaches to neural modeling. We propose methods for scaling HMMs to massive state spaces while maintaining efficient exact inference, a compact parameterization, and effective regularization. Experiments show that this approach leads to models that are much more accurate than previous HMMs and n-gram-based methods, making progress towards the performance of state-of-the-art NN models.