Kai Liu


2024

pdf bib
WW-CSL: A New Dataset for Word-Based Wearable Chinese Sign Language Detection
Fan Xu | Kai Liu | Yifeng Yang | Keyu Yan
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Sign language is an effective non-verbal communication mode for the hearing-impaired people. Since the video-based sign language detection models have high requirements for enough lighting and clear background, current wearing glove-based sign language models are robust for poor light and occlusion situations. In this paper, we annotate a new dataset of Word-based Wearable Chinese Sign Languag (WW-CSL) gestures. Specifically, we propose a three-form (e.g., sequential sensor data, gesture video, and gesture text) scheme to represent dynamic CSL gestures. Guided by the scheme, a total of 3,000 samples were collected, corresponding to 100 word-based CSL gestures. Furthermore, we present a transformer-based baseline model to fuse 2 inertial measurement unites (IMUs) and 10 flex sensors for the wearable CSL detection. In order to integrate the advantage of video-based and wearable glove-based CSL gestures, we also propose a transformer-based Multi-Modal CSL Detection (MM-CSLD) framework which adeptly integrates the local sequential sensor data derived from wearable-based CSL gestures with the global, fine-grained skeleton representations captured from video-based CSL gestures simultaneously.

2023

pdf bib
EasyQuant: An Efficient Data-free Quantization Algorithm for LLMs
Hanlin Tang | Yifu Sun | Decheng Wu | Kai Liu | Jianchen Zhu | Zhanhui Kang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) have proven to be very superior to conventional methods in various tasks. However, their expensive computations and high memory requirements are prohibitive for deployment. Model quantization is an effective method for reducing this overhead. The problem is that in most previous works, the quantized model was calibrated using few samples from the training data, which might affect the generalization of the quantized LLMs to unknown cases and tasks. Hence in this work, we explore an important question: Can we design a data-independent quantization method for LLMs to guarantee its generalization performance? In this work, we propose EasyQuant, a training-free and data-independent weight-only quantization algorithm for LLMs. Our observation indicates that two factors: outliers in the weight and quantization ranges, are essential for reducing the quantization error. Therefore, in EasyQuant, we leave the outliers (less than 1%) unchanged and optimize the quantization range to reduce the reconstruction error. With these methods, we surprisingly find that EasyQuant achieves comparable performance to the original model. Since EasyQuant does not depend on any training data, the generalization performance of quantized LLMs is safely guaranteed. Moreover, EasyQuant can be implemented in parallel so that the quantized model could be attained in a few minutes even for LLMs over 100B. To our best knowledge, we are the first work that achieves almost lossless quantization performance for LLMs under a data-independent setting and our algorithm runs over 10 times faster than the data-dependent methods.

2021

pdf bib
RocketQA: An Optimized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering
Yingqi Qu | Yuchen Ding | Jing Liu | Kai Liu | Ruiyang Ren | Wayne Xin Zhao | Daxiang Dong | Hua Wu | Haifeng Wang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

In open-domain question answering, dense passage retrieval has become a new paradigm to retrieve relevant passages for finding answers. Typically, the dual-encoder architecture is adopted to learn dense representations of questions and passages for semantic matching. However, it is difficult to effectively train a dual-encoder due to the challenges including the discrepancy between training and inference, the existence of unlabeled positives and limited training data. To address these challenges, we propose an optimized training approach, called RocketQA, to improving dense passage retrieval. We make three major technical contributions in RocketQA, namely cross-batch negatives, denoised hard negatives and data augmentation. The experiment results show that RocketQA significantly outperforms previous state-of-the-art models on both MSMARCO and Natural Questions. We also conduct extensive experiments to examine the effectiveness of the three strategies in RocketQA. Besides, we demonstrate that the performance of end-to-end QA can be improved based on our RocketQA retriever.

2020

pdf bib
Understanding the Tradeoff between Cost and Quality of Expert Annotations for Keyphrase Extraction
Hung Chau | Saeid Balaneshin | Kai Liu | Ondrej Linda
Proceedings of the 14th Linguistic Annotation Workshop

Generating expert ground truth annotations of documents can be a very expensive process. However, such annotations are essential for training domain-specific keyphrase extraction models, especially when utilizing data-intensive deep learning models in unique domains such as real-estate. Therefore, it is critical to optimize the manual annotation process to maximize the quality of the annotations while minimizing the cost of manual labor. To address this need, we explore multiple annotation strategies including self-review and peer-review as well as various methods of resolving annotator disagreements. We evaluate these annotation strategies with respect to their cost and on the task of learning keyphrase extraction models applied with an experimental dataset in the real-estate domain. The results demonstrate that different annotation strategies should be considered depending on specific metrics such as precision and recall.

2019

pdf bib
Enhancing Pre-Trained Language Representations with Rich Knowledge for Machine Reading Comprehension
An Yang | Quan Wang | Jing Liu | Kai Liu | Yajuan Lyu | Hua Wu | Qiaoqiao She | Sujian Li
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Machine reading comprehension (MRC) is a crucial and challenging task in NLP. Recently, pre-trained language models (LMs), especially BERT, have achieved remarkable success, presenting new state-of-the-art results in MRC. In this work, we investigate the potential of leveraging external knowledge bases (KBs) to further improve BERT for MRC. We introduce KT-NET, which employs an attention mechanism to adaptively select desired knowledge from KBs, and then fuses selected knowledge with BERT to enable context- and knowledge-aware predictions. We believe this would combine the merits of both deep LMs and curated KBs towards better MRC. Experimental results indicate that KT-NET offers significant and consistent improvements over BERT, outperforming competitive baselines on ReCoRD and SQuAD1.1 benchmarks. Notably, it ranks the 1st place on the ReCoRD leaderboard, and is also the best single model on the SQuAD1.1 leaderboard at the time of submission (March 4th, 2019).

2018

pdf bib
DuReader: a Chinese Machine Reading Comprehension Dataset from Real-world Applications
Wei He | Kai Liu | Jing Liu | Yajuan Lyu | Shiqi Zhao | Xinyan Xiao | Yuan Liu | Yizhong Wang | Hua Wu | Qiaoqiao She | Xuan Liu | Tian Wu | Haifeng Wang
Proceedings of the Workshop on Machine Reading for Question Answering

This paper introduces DuReader, a new large-scale, open-domain Chinese machine reading comprehension (MRC) dataset, designed to address real-world MRC. DuReader has three advantages over previous MRC datasets: (1) data sources: questions and documents are based on Baidu Search and Baidu Zhidao; answers are manually generated. (2) question types: it provides rich annotations for more question types, especially yes-no and opinion questions, that leaves more opportunity for the research community. (3) scale: it contains 200K questions, 420K answers and 1M documents; it is the largest Chinese MRC dataset so far. Experiments show that human performance is well above current state-of-the-art baseline systems, leaving plenty of room for the community to make improvements. To help the community make these improvements, both DuReader and baseline systems have been posted online. We also organize a shared competition to encourage the exploration of more models. Since the release of the task, there are significant improvements over the baselines.

pdf bib
Adaptations of ROUGE and BLEU to Better Evaluate Machine Reading Comprehension Task
An Yang | Kai Liu | Jing Liu | Yajuan Lyu | Sujian Li
Proceedings of the Workshop on Machine Reading for Question Answering

Current evaluation metrics to question answering based machine reading comprehension (MRC) systems generally focus on the lexical overlap between candidate and reference answers, such as ROUGE and BLEU. However, bias may appear when these metrics are used for specific question types, especially questions inquiring yes-no opinions and entity lists. In this paper, we make adaptations on the metrics to better correlate n-gram overlap with the human judgment for answers to these two question types. Statistical analysis proves the effectiveness of our approach. Our adaptations may provide positive guidance for the development of real-scene MRC systems.

pdf bib
Multi-Passage Machine Reading Comprehension with Cross-Passage Answer Verification
Yizhong Wang | Kai Liu | Jing Liu | Wei He | Yajuan Lyu | Hua Wu | Sujian Li | Haifeng Wang
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Machine reading comprehension (MRC) on real web data usually requires the machine to answer a question by analyzing multiple passages retrieved by search engine. Compared with MRC on a single passage, multi-passage MRC is more challenging, since we are likely to get multiple confusing answer candidates from different passages. To address this problem, we propose an end-to-end neural model that enables those answer candidates from different passages to verify each other based on their content representations. Specifically, we jointly train three modules that can predict the final answer based on three factors: the answer boundary, the answer content and the cross-passage answer verification. The experimental results show that our method outperforms the baseline by a large margin and achieves the state-of-the-art performance on the English MS-MARCO dataset and the Chinese DuReader dataset, both of which are designed for MRC in real-world settings.

2015

pdf bib
Robust Multi-Relational Clustering via 1-Norm Symmetric Nonnegative Matrix Factorization
Kai Liu | Hua Wang
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

2013

pdf bib
Bilingually-Guided Monolingual Dependency Grammar Induction
Kai Liu | Yajuan Lü | Wenbin Jiang | Qun Liu
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2010

pdf bib
The ICT statistical machine translation system for IWSLT 2010
Hao Xiong | Jun Xie | Hui Yu | Kai Liu | Wei Luo | Haitao Mi | Yang Liu | Yajuan Lü | Qun Liu
Proceedings of the 7th International Workshop on Spoken Language Translation: Evaluation Campaign