Domain adaptation remains a challenge in the realm of Neural Machine Translation (NMT), even in the era of large language models (LLMs). Existing non-parametric approaches like nearest neighbor machine translation have made small Autoregressive Translation (AT) models achieve efficient domain generalization and adaptation without updating parameters, but leaving the Non-Autoregressive Translation (NAT) counterparts under-explored. To fill this blank, we introduce Bi-kNN, an innovative and efficient domain adaptation approach for NAT models that tailors a k-nearest-neighbor algorithm for NAT. Specifically, we introduce an effective datastore construction and correlated updating strategies to conform the parallel nature of NAT. Additionally, we train a meta-network that seamlessly integrates the NN distribution with the NMT distribution robustly during the iterative decoding process of NAT. Our experimental results across four benchmark datasets demonstrate that our Bi-kNN not only achieves significant improvements over the Base-NAT model (7.8 BLEU on average) but also exhibits enhanced efficiency.
Large language models (LLMs) have showcased their remarkable capabilities to handle various downstream tasks, including multilingual machine translation ability. Despite their impressive performance, decoder-only LLMs lack an explicit alignment between source and target contexts, leading to translation that may not faithfully represent the original content. To address this, we propose three learning strategies to encourage LLMs to pay more attention to the source context during translation: 1) adjusting attention weights on the source context by adaptive attention re-weighting; 2) suppressing the irrelevant target prefix using contrastive decoding; 3) avoiding excessive reliance on the target prefix through target-constrained tuning. To verify the effectiveness of our model, we curate a new dataset specifically focusing on unfaithful translations generated by LLMs. Experimental results on both human-collected and general test sets verify the effectiveness of our model across multiple language pairs. Further human evaluation demonstrates the efficacy of our method in reducing hallucinatory translation and improving the fidelity of translations.
Motivated by the success of unsupervised neural machine translation (UNMT), we introduce an unsupervised sign language translation and generation network (USLNet), which learns from abundant single-modality (text and video) data without parallel sign language data. USLNet comprises two main components: single-modality reconstruction modules (text and video) that rebuild the input from its noisy version in the same modality and cross-modality back-translation modules (text-video-text and video-text-video) that reconstruct the input from its noisy version in the different modality using back-translation procedure. Unlike the single-modality back-translation procedure in text-based UNMT, USLNet faces the cross-modality discrepancy in feature representation, in which the length and the feature dimension mismatch between text and video sequences. We propose a sliding window method to address the issues of aligning variable-length text with video sequences. To our knowledge, USLNet is the first unsupervised sign language translation and generation model capable of generating both natural language text and sign language video in a unified manner. Experimental results on the BBC-Oxford Sign Language dataset and Open-Domain American Sign Language dataset reveal that USLNet achieves competitive results compared to supervised baseline models, indicating its effectiveness in sign language translation and generation.
End-to-end speech translation (ST) presents notable disambiguation challenges as it necessitates simultaneous cross-modal and cross-lingual transformations. While word sense disambiguation is an extensively investigated topic in textual machine translation, the exploration of disambiguation strategies for ST models remains limited. Addressing this gap, this paper introduces the concept of speech sense disambiguation (SSD), specifically emphasizing homophones - words pronounced identically but with different meanings. To facilitate this, we first create a comprehensive homophone dictionary and an annotated dataset rich with homophone information established based on speech-text alignment. Building on this unique dictionary, we introduce AmbigST, an innovative homophone-aware contrastive learning approach that integrates a homophone-aware masking strategy. Our experiments on different MuST-C and CoVoST ST benchmarks demonstrate that AmbigST sets new performance standards. Specifically, it achieves SOTA results on BLEU scores for English to German, Spanish, and French ST tasks, underlining its effectiveness in reducing speech sense ambiguity. Data, code and scripts are freely available at https://github.com/ytf-philp/AmbigST.
Simultaneous Machine Translation (SiMT) aims to yield a real-time partial translation with a monotonically growing source-side context.However, there is a counterintuitive phenomenon about the context usage between training and inference: *e.g.*, in wait-k inference, model consistently trained with wait-k is much worse than that model inconsistently trained with wait-k' (k'≠ k) in terms of translation quality. To this end, we first investigate the underlying reasons behind this phenomenon and uncover the following two factors: 1) the limited correlation between translation quality and training loss; 2) exposure bias between training and inference. Based on both reasons, we then propose an effective training approach called context consistency training accordingly, which encourages consistent context usage between training and inference by optimizing translation quality and latency as bi-objectives and exposing the predictions to the model during the training. The experiments on three language pairs demonstrate that our SiMT system encouraging context consistency outperforms existing SiMT systems with context inconsistency for the first time.
Recently, large language models (LLMs) enhanced by self-reflection have achieved promising performance on machine transla004 tion. The key idea is guiding LLMs to generate translation with human-like feedback. However, existing self-reflection methods lack effective feedback information, limiting the translation performance. To address this, we introduce a DUAL-REFLECT framework, leveraging the dual learning of translation tasks to provide effective feedback, thereby enhancing the models’ self-reflective abilities and improving translation performance. The application of this method across various translation tasks has proven its effectiveness in improving translation accuracy and eliminating ambiguities, especially in translation tasks with low-resource language pairs.
It is widely known that hallucination is a critical issue in Simultaneous Machine Translation (SiMT) due to the absence of source-side information. While many efforts have been made to enhance performance for SiMT, few of them attempt to understand and analyze hallucination in SiMT.Therefore, we conduct a comprehensive analysis of hallucination in SiMT from two perspectives: understanding the distribution of hallucination words and the target-side context usage of them.Intensive experiments demonstrate some valuable findings and particularly show that it is possible to alleviate hallucination by decreasing the over usage of target-side information for SiMT.
State-of-the-art translation Quality Estimation (QE) models are proven to be biased. More specifically, they over-rely on monolingual features while ignoring the bilingual semantic alignment. In this work, we propose a novel method to mitigate the bias of the QE model and improve estimation performance. Our method is based on the contrastive learning between clean and noisy sentence pairs. We first introduce noise to the target side of the parallel sentence pair, forming the negative samples. With the original parallel pairs as the positive sample, the QE model is contrastively trained to distinguish the positive samples from the negative ones. This objective is jointly trained with the regression-style quality estimation, so as to prevent the QE model from overfitting to monolingual features. Experiments on WMT QE evaluation datasets demonstrate that our method improves the estimation performance by a large margin while mitigating the bias.
In the era of large models, low-resource question-answering tasks lag, emphasizing the importance of data augmentation - a key research avenue in natural language processing. The main challenges include leveraging the large model’s internal knowledge for data augmentation, determining which QA data component - the question, passage, or answer - benefits most from augmentation, and retaining consistency in the augmented content without inducing excessive noise. To tackle these, we introduce PQQ, an innovative approach for question data augmentation consisting of Prompt Answer, Question Generation, and Question Filter. Our experiments reveal that ChatGPT underperforms on the experimental data, yet our PQQ method excels beyond existing augmentation strategies. Further, its universal applicability is validated through successful tests on high-resource QA tasks like SQUAD1.1 and TriviaQA.
Transformers are the predominant model for machine translation. Recent works also showed that a single Transformer model can be trained to learn translation for multiple different language pairs, achieving promising results. In this work, we investigate how the multilingual Transformer model pays attention for translating different language pairs. We first performed automatic pruning to eliminate a large number of noisy heads and then analyzed the functions and behaviors of the remaining heads in both self-attention and cross-attention. We find that different language pairs, in spite of having different syntax and word orders, tended to share the same heads for the same functions, such as syntax heads and reordering heads. However, the different characteristics of different language pairs clearly caused interference in function heads and affected head accuracies. Additionally, we reveal an interesting behavior of the Transformer cross-attention: the deep-layer cross-attention heads work in a clear cooperative way to learn different options for word reordering, which can be caused by the nature of translation tasks having multiple different gold translations in the target language for the same source sentence.
Large language models (LLMs) have demonstrated exceptional performance in reasoning tasks with dedicated Chain-of-Thought (CoT) prompts. Further enhancing CoT prompts with exquisite exemplars can significantly improve reasoning performance.However, the effectiveness of CoT prompts may fluctuate dramatically with different choices of in-context examples. Additionally, manual construction of rationale steps can be time-consuming, presenting challenges for the widespread adoption of CoT prompting. In this work, we propose a novel approach by introducing information entropy (IE) as a criteria on for CoT prompt selection. We extend this criterion to the CoT generation and inference stages, automatically generating CoT prompts with higher information entropy scores and adaptively determining the number of samples. These three stages together form our proposed information- entropy-based multi-step reasoning for large language models, named INFORM. Our experiments across seven reasoning benchmarks utilizing two language models(GPT-3.5-Turbo and text-davinci-003) demonstrate the superiority of INFORM both in performance and efficiency.
An end-to-end speech-to-text (S2T) translation model is usually initialized from a pre-trained speech recognition encoder and a pre-trained text-to-text (T2T) translation decoder. Although this straightforward setting has been shown empirically successful, there do not exist clear answers to the research questions: 1) how are speech and text modalities fused in S2T model and 2) how to better fuse the two modalities? In this paper, we take the first step toward understanding the fusion of speech and text features in S2T model. We first design and release a 10GB linguistic probing benchmark, namely Speech-Senteval, to investigate the acoustic and linguistic behaviors of S2T models. Preliminary analysis reveals that the uppermost encoder layers of the S2T model can not learn linguistic knowledge efficiently, which is crucial for accurate translation. Based on the finding, we further propose a simple plug-in prompt-learning strategy on the uppermost encoder layers to broaden the abstract representation power of the encoder of S2T models. We call such a prompt-enhanced S2T model PromptST. Experimental results on four widely-used S2T datasets show that PromptST can deliver significant improvements over a strong baseline by capturing richer linguistic knowledge. Benchmarks, code, and scripts are freely available at https://github.com/ytf-philp/PromptST.
Document-level relation extraction (DocRE) aims to determine the relation between two entities from a document of multiple sentences. Recent studies typically represent the entire document by sequence- or graph-based models to predict the relations of all entity pairs. However, we find that such a model is not robust and exhibits bizarre behaviors: it predicts correctly when an entire test document is fed as input, but errs when non-evidence sentences are removed. To this end, we propose a Sentence Importance Estimation and Focusing (SIEF) framework for DocRE, where we design a sentence importance score and a sentence focusing loss, encouraging DocRE models to focus on evidence sentences. Experimental results on two domains show that our SIEF not only improves overall performance, but also makes DocRE models more robust. Moreover, SIEF is a general framework, shown to be effective when combined with a variety of base DocRE models.
Machine translation typically adopts an encoder-to-decoder framework, in which the decoder generates the target sentence word-by-word in an auto-regressive manner. However, the auto-regressive decoder faces a deep-rooted one-pass issue whereby each generated word is considered as one element of the final output regardless of whether it is correct or not. These generated wrong words further constitute the target historical context to affect the generation of subsequent target words. This paper proposes a novel synchronous refinement method to revise potential errors in the generated words by considering part of the target future context. Particularly, the proposed approach allows the auto-regressive decoder to refine the previously generated target words and generate the next target word synchronously. The experimental results on three widely-used machine translation tasks demonstrated the effectiveness of the proposed approach.
This tutorial surveys the latest technical progress of syntactic parsing and the role of syntax in end-to-end natural language processing (NLP) tasks, in which semantic role labeling (SRL) and machine translation (MT) are the representative NLP tasks that have always been beneficial from informative syntactic clues since a long time ago, though the advance from end-to-end deep learning models shows new results. In this tutorial, we will first introduce the background and the latest progress of syntactic parsing and SRL/NMT. Then, we will summarize the key evidence about the syntactic impacts over these two concerning tasks, and explore the behind reasons from both computational and linguistic backgrounds.
Unsupervised neural machine translation (UNMT) that relies solely on massive monolingual corpora has achieved remarkable results in several translation tasks. However, in real-world scenarios, massive monolingual corpora do not exist for some extremely low-resource languages such as Estonian, and UNMT systems usually perform poorly when there is not adequate training corpus for one language. In this paper, we first define and analyze the unbalanced training data scenario for UNMT. Based on this scenario, we propose UNMT self-training mechanisms to train a robust UNMT system and improve its performance in this case. Experimental results on several language pairs show that the proposed methods substantially outperform conventional UNMT systems.
Neural machine translation (NMT) encodes the source sentence in a universal way to generate the target sentence word-by-word. However, NMT does not consider the importance of word in the sentence meaning, for example, some words (i.e., content words) express more important meaning than others (i.e., function words). To address this limitation, we first utilize word frequency information to distinguish between content and function words in a sentence, and then design a content word-aware NMT to improve translation performance. Empirical results on the WMT14 English-to-German, WMT14 English-to-French, and WMT17 Chinese-to-English translation tasks show that the proposed methods can significantly improve the performance of Transformer-based NMT.
Unsupervised neural machine translation (UNMT) has recently achieved remarkable results for several language pairs. However, it can only translate between a single language pair and cannot produce translation results for multiple language pairs at the same time. That is, research on multilingual UNMT has been limited. In this paper, we empirically introduce a simple method to translate between thirteen languages using a single encoder and a single decoder, making use of multilingual data to improve UNMT for all language pairs. On the basis of the empirical findings, we propose two knowledge distillation methods to further enhance multilingual UNMT performance. Our experiments on a dataset with English translated to and from twelve other languages (including three language families and six language branches) show remarkable results, surpassing strong unsupervised individual baselines while achieving promising performance between non-English language pairs in zero-shot translation scenarios and alleviating poor performance in low-resource language pairs.
In this paper, we introduced our joint team SJTU-NICT ‘s participation in the WMT 2020 machine translation shared task. In this shared task, we participated in four translation directions of three language pairs: English-Chinese, English-Polish on supervised machine translation track, German-Upper Sorbian on low-resource and unsupervised machine translation tracks. Based on different conditions of language pairs, we have experimented with diverse neural machine translation (NMT) techniques: document-enhanced NMT, XLM pre-trained language model enhanced NMT, bidirectional translation as a pre-training, reference language based UNMT, data-dependent gaussian prior objective, and BT-BLEU collaborative filtering self-training. We also used the TF-IDF algorithm to filter the training set to obtain a domain more similar set with the test set for finetuning. In our submissions, the primary systems won the first place on English to Chinese, Polish to English, and German to Upper Sorbian translation directions.
Neural models have achieved great success on the task of machine reading comprehension (MRC), which are typically trained on hard labels. We argue that hard labels limit the model capability on generalization due to the label sparseness problem. In this paper, we propose a robust training method for MRC models to address this problem. Our method consists of three strategies, 1) label smoothing, 2) word overlapping, 3) distribution prediction. All of them help to train models on soft labels. We validate our approach on the representative architecture - ALBERT. Experimental results show that our method can greatly boost the baseline with 1% improvement in average, and achieve state-of-the-art performance on NewsQA and QUOREF.
Unsupervised neural machine translation (UNMT) has recently attracted great interest in the machine translation community. The main advantage of the UNMT lies in its easy collection of required large training text sentences while with only a slightly worse performance than supervised neural machine translation which requires expensive annotated translation pairs on some translation tasks. In most studies, the UMNT is trained with clean data without considering its robustness to the noisy data. However, in real-world scenarios, there usually exists noise in the collected input sentences which degrades the performance of the translation system since the UNMT is sensitive to the small perturbations of the input sentences. In this paper, we first time explicitly take the noisy data into consideration to improve the robustness of the UNMT based systems. First of all, we clearly defined two types of noises in training sentences, i.e., word noise and word order noise, and empirically investigate its effect in the UNMT, then we propose adversarial training methods with denoising process in the UNMT. Experimental results on several language pairs show that our proposed methods substantially improved the robustness of the conventional UNMT systems in noisy scenarios.
In this paper, we describe our supervised neural machine translation (NMT) systems that we developed for the news translation task for Kazakh↔English, Gujarati↔English, Chinese↔English, and English→Finnish translation directions. We focused on leveraging multilingual transfer learning and back-translation for the extremely low-resource language pairs: Kazakh↔English and Gujarati↔English translation. For the Chinese↔English translation, we used the provided parallel data augmented with a large quantity of back-translated monolingual data to train state-of-the-art NMT systems. We then employed techniques that have been proven to be most effective, such as back-translation, fine-tuning, and model ensembling, to generate the primary submissions of Chinese↔English. For English→Finnish, our submission from WMT18 remains a strong baseline despite the increase in parallel corpora for this year’s task.
This paper presents the NICT’s participation in the WMT19 unsupervised news translation task. We participated in the unsupervised translation direction: German-Czech. Our primary submission to the task is the result of a simple combination of our unsupervised neural and statistical machine translation systems. Our system is ranked first for the German-to-Czech translation task, using only the data provided by the organizers (“constraint’”), according to both BLEU-cased and human evaluation. We also performed contrastive experiments with other language pairs, namely, English-Gujarati and English-Kazakh, to better assess the effectiveness of unsupervised machine translation in for distant language pairs and in truly low-resource conditions.
Unsupervised bilingual word embedding (UBWE), together with other technologies such as back-translation and denoising, has helped unsupervised neural machine translation (UNMT) achieve remarkable results in several language pairs. In previous methods, UBWE is first trained using non-parallel monolingual corpora and then this pre-trained UBWE is used to initialize the word embedding in the encoder and decoder of UNMT. That is, the training of UBWE and UNMT are separate. In this paper, we first empirically investigate the relationship between UBWE and UNMT. The empirical findings show that the performance of UNMT is significantly affected by the performance of UBWE. Thus, we propose two methods that train UNMT with UBWE agreement. Empirical results on several language pairs show that the proposed methods significantly outperform conventional UNMT.
The reordering model plays an important role in phrase-based statistical machine translation. However, there are few works that exploit the reordering information in neural machine translation. In this paper, we propose a reordering mechanism to learn the reordering embedding of a word based on its contextual information. These learned reordering embeddings are stacked together with self-attention networks to learn sentence representation for machine translation. The reordering mechanism can be easily integrated into both the encoder and the decoder in the Transformer translation system. Experimental results on WMT’14 English-to-German, NIST Chinese-to-English, and WAT Japanese-to-English translation tasks demonstrate that the proposed methods can significantly improve the performance of the Transformer.
The training objective of neural machine translation (NMT) is to minimize the loss between the words in the translated sentences and those in the references. In NMT, there is a natural correspondence between the source sentence and the target sentence. However, this relationship has only been represented using the entire neural network and the training objective is computed in word-level. In this paper, we propose a sentence-level agreement module to directly minimize the difference between the representation of source and target sentence. The proposed agreement module can be integrated into NMT as an additional training objective function and can also be used to enhance the representation of the source sentences. Empirical results on the NIST Chinese-to-English and WMT English-to-German tasks show the proposed agreement module can significantly improve the NMT performance.
Neural machine translation (NMT) takes deterministic sequences for source representations. However, either word-level or subword-level segmentations have multiple choices to split a source sequence with different word segmentors or different subword vocabulary sizes. We hypothesize that the diversity in segmentations may affect the NMT performance. To integrate different segmentations with the state-of-the-art NMT model, Transformer, we propose lattice-based encoders to explore effective word or subword representation in an automatic way during training. We propose two methods: 1) lattice positional encoding and 2) lattice-aware self-attention. These two methods can be used together and show complementary to each other to further improve translation performance. Experiment results show superiorities of lattice-based encoders in word-level and subword-level representations over conventional Transformer encoder.
In the Transformer network architecture, positional embeddings are used to encode order dependencies into the input representation. However, this input representation only involves static order dependencies based on discrete numerical information, that is, are independent of word content. To address this issue, this work proposes a recurrent positional embedding approach based on word vector. In this approach, these recurrent positional embeddings are learned by a recurrent neural network, encoding word content-based order dependencies into the input representation. They are then integrated into the existing multi-head self-attention model as independent heads or part of each head. The experimental results revealed that the proposed approach improved translation performance over that of the state-of-the-art Transformer baseline in WMT’14 English-to-German and NIST Chinese-to-English translation tasks.
This paper presents the NICT’s participation (team ID: NICT) in the 6th Workshop on Asian Translation (WAT-2019) shared translation task, specifically Myanmar (Burmese) - English task in both translation directions. We built neural machine translation (NMT) systems for these tasks. Our NMT systems were trained with language model pretraining. Back-translation technology is adopted to NMT. Our NMT systems rank the third in English-to-Myanmar and the second in Myanmar-to-English according to BLEU score.
In Neural Machine Translation (NMT), each word is represented as a low-dimension, real-value vector for encoding its syntax and semantic information. This means that even if the word is in a different sentence context, it is represented as the fixed vector to learn source representation. Moreover, a large number of Out-Of-Vocabulary (OOV) words, which have different syntax and semantic information, are represented as the same vector representation of “unk”. To alleviate this problem, we propose a novel context-aware smoothing method to dynamically learn a sentence-specific vector for each word (including OOV words) depending on its local context words in a sentence. The learned context-aware representation is integrated into the NMT to improve the translation performance. Empirical results on NIST Chinese-to-English translation task show that the proposed approach achieves 1.78 BLEU improvements on average over a strong attentional NMT, and outperforms some existing systems.
Instance weighting has been widely applied to phrase-based machine translation domain adaptation. However, it is challenging to be applied to Neural Machine Translation (NMT) directly, because NMT is not a linear model. In this paper, two instance weighting technologies, i.e., sentence weighting and domain weighting with a dynamic weight learning strategy, are proposed for NMT domain adaptation. Empirical results on the IWSLT English-German/French tasks show that the proposed methods can substantially improve NMT performance by up to 2.7-6.7 BLEU points, outperforming the existing baselines by up to 1.6-3.6 BLEU points.
Source dependency information has been successfully introduced into statistical machine translation. However, there are only a few preliminary attempts for Neural Machine Translation (NMT), such as concatenating representations of source word and its dependency label together. In this paper, we propose a novel NMT with source dependency representation to improve translation performance of NMT, especially long sentences. Empirical results on NIST Chinese-to-English translation task show that our method achieves 1.6 BLEU improvements on average over a strong NMT system.