This paper explores the task of automatic prediction of text spans in a legal problem description that support a legal area label. We use a corpus of problem descriptions written by laypeople in English that is annotated by practising lawyers. Inherent subjectivity exists in our task because legal area categorisation is a complex task, and lawyers often have different views on a problem. Experiments show that training on majority-voted spans outperforms training on disaggregated ones.
Natural language processing (NLP) has a significant impact on society via technologies such as machine translation and search engines. Despite its success, NLP technology is only widely available for high-resource languages such as English and Chinese, while it remains inaccessible to many languages due to the unavailability of data resources and benchmarks. In this work, we focus on developing resources for languages in Indonesia. Despite being the second most linguistically diverse country, most languages in Indonesia are categorized as endangered and some are even extinct. We develop the first-ever parallel resource for 10 low-resource languages in Indonesia. Our resource includes sentiment and machine translation datasets, and bilingual lexicons. We provide extensive analyses and describe challenges for creating such resources. We hope this work can spark NLP research on Indonesian and other underrepresented languages.
NLP research is impeded by a lack of resources and awareness of the challenges presented by underrepresented languages and dialects. Focusing on the languages spoken in Indonesia, the second most linguistically diverse and the fourth most populous nation of the world, we provide an overview of the current state of NLP research for Indonesia’s 700+ languages. We highlight challenges in Indonesian NLP and how these affect the performance of current NLP systems. Finally, we provide general recommendations to help develop NLP technology not only for languages of Indonesia but also other underrepresented languages.
Providing technologies to communities or domains where training data is scarce or protected e.g., for privacy reasons, is becoming increasingly important. To that end, we generalise methods for unsupervised transfer from multiple input models for structured prediction. We show that the means of aggregating over the input models is critical, and that multiplying marginal probabilities of substructures to obtain high-probability structures for distant supervision is substantially better than taking the union of such structures over the input models, as done in prior work. Testing on 18 languages, we demonstrate that the method works in a cross-lingual setting, considering both dependency parsing and part-of-speech structured prediction problems. Our analyses show that the proposed method produces less noisy labels for the distant supervision.
Cross-lingual transfer is a leading technique for parsing low-resource languages in the absence of explicit supervision. Simple ‘direct transfer’ of a learned model based on a multilingual input encoding has provided a strong benchmark. This paper presents a method for unsupervised cross-lingual transfer that improves over direct transfer systems by using their output as implicit supervision as part of self-training on unlabelled text in the target language. The method assumes minimal resources and provides maximal flexibility by (a) accepting any pre-trained arc-factored dependency parser; (b) assuming no access to source language data; (c) supporting both projective and non-projective parsing; and (d) supporting multi-source transfer. With English as the source language, we show significant improvements over state-of-the-art transfer models on both distant and nearby languages, despite our conceptually simpler approach. We provide analyses of the choice of source languages for multi-source transfer, and the advantage of non-projective parsing. Our code is available online.
This paper describes PTST, a source-free unsupervised domain adaptation technique for sequence tagging, and its application to the SemEval-2021 Task 10 on time expression recognition. PTST is an extension of the cross-lingual parsimonious parser transfer framework, which uses high-probability predictions of the source model as a supervision signal in self-training. We extend the framework to a sequence prediction setting, and demonstrate its applicability to unsupervised domain adaptation. PTST achieves F1 score of 79.6% on the official test set, with the precision of 90.1%, the highest out of 14 submissions.
Most Semantic Role Labeling (SRL) approaches are supervised methods which require a significant amount of annotated corpus, and the annotation requires linguistic expertise. In this paper, we propose a Multi-Task Active Learning framework for Semantic Role Labeling with Entity Recognition (ER) as the auxiliary task to alleviate the need for extensive data and use additional information from ER to help SRL. We evaluate our approach on Indonesian conversational dataset. Our experiments show that multi-task active learning can outperform single-task active learning method and standard multi-task learning. According to our results, active learning is more efficient by using 12% less of training data compared to passive learning in both single-task and multi-task setting. We also introduce a new dataset for SRL in Indonesian conversational domain to encourage further research in this area.
Despite the long history of named-entity recognition (NER) task in the natural language processing community, previous work rarely studied the task on conversational texts. Such texts are challenging because they contain a lot of word variations which increase the number of out-of-vocabulary (OOV) words. The high number of OOV words poses a difficulty for word-based neural models. Meanwhile, there is plenty of evidence to the effectiveness of character-based neural models in mitigating this OOV problem. We report an empirical evaluation of neural sequence labeling models with character embedding to tackle NER task in Indonesian conversational texts. Our experiments show that (1) character models outperform word embedding-only models by up to 4 F1 points, (2) character models perform better in OOV cases with an improvement of as high as 15 F1 points, and (3) character models are robust against a very high OOV rate.