This paper reports the first release of the UMR (Uniform Meaning Representation) data set. UMR is a graph-based meaning representation formalism consisting of a sentence-level graph and a document-level graph. The sentence-level graph represents predicate-argument structures, named entities, word senses, aspectuality of events, as well as person and number information for entities. The document-level graph represents coreferential, temporal, and modal relations that go beyond sentence boundaries. UMR is designed to capture the commonalities and variations across languages and this is done through the use of a common set of abstract concepts, relations, and attributes as well as concrete concepts derived from words from invidual languages. This UMR release includes annotations for six languages (Arapaho, Chinese, English, Kukama, Navajo, Sanapana) that vary greatly in terms of their linguistic properties and resource availability. We also describe on-going efforts to enlarge this data set and extend it to other genres and modalities. We also briefly describe the available infrastructure (UMR annotation guidelines and tools) that others can use to create similar data sets.
Within Dialogue Modeling research in AI and NLP, considerable attention has been spent on “dialogue state tracking” (DST), which is the ability to update the representations of the speaker’s needs at each turn in the dialogue by taking into account the past dialogue moves and history. Less studied but just as important to dialogue modeling, however, is “common ground tracking” (CGT), which identifies the shared belief space held by all of the participants in a task-oriented dialogue: the task-relevant propositions all participants accept as true. In this paper we present a method for automatically identifying the current set of shared beliefs and ”questions under discussion” (QUDs) of a group with a shared goal. We annotate a dataset of multimodal interactions in a shared physical space with speech transcriptions, prosodic features, gestures, actions, and facets of collaboration, and operationalize these features for use in a deep neural model to predict moves toward construction of common ground. Model outputs cascade into a set of formal closure rules derived from situated evidence and belief axioms and update operations. We empirically assess the contribution of each feature type toward successful construction of common ground relative to ground truth, establishing a benchmark in this novel, challenging task.
Abstract Meaning Representation (AMR) is a general-purpose meaning representation that has become popular for its clear structure, ease of annotation and available corpora, and overall expressiveness. While AMR was designed to represent sentence meaning in English text, recent research has explored its adaptation to broader domains, including documents, dialogues, spatial information, cross-lingual tasks, and gesture. In this paper, we present an annotated corpus of multimodal (speech and gesture) AMR in a task-based setting. Our corpus is multilayered, containing temporal alignments to both the speech signal and to descriptions of gesture morphology. We also capture coreference relationships across modalities, enabling fine-grained analysis of how the semantics of gesture and natural language interact. We discuss challenges that arise when identifying cross-modal coreference and anaphora, as well as in creating and evaluating multimodal corpora in general. Although we find AMR’s abstraction away from surface form (in both language and gesture) occasionally too coarse-grained to capture certain cross-modal interactions, we believe its flexibility allows for future work to fill in these gaps. Our corpus and annotation guidelines are available at https://github.com/klai12/encoding-gesture-multimodal-dialogue.
Actions are critical for interpreting dialogue: they provide context for demonstratives and definite descriptions in discourse, and they continually update the common ground. This paper describes how Abstract Meaning Representation (AMR) can be used to annotate actions in multimodal human-human and human-object interactions. We conduct initial annotations of shared task and first-person point-of-view videos. We show that AMRs can be interpreted by a proxy language, such as VoxML, as executable annotation structures in order to recreate and simulate a series of annotated events.
This paper presents Gesture AMR, an extension to Abstract Meaning Representation (AMR), that captures the meaning of gesture. In developing Gesture AMR, we consider how gesture form and meaning relate; how gesture packages meaning both independently and in interaction with speech; and how the meaning of gesture is temporally and contextually determined. Our case study for developing Gesture AMR is a focused human-human shared task to build block structures. We develop an initial taxonomy of gesture act relations that adheres to AMR’s existing focus on predicate-argument structure while integrating meaningful elements unique to gesture. Pilot annotation shows Gesture AMR to be more challenging than standard AMR, and illustrates the need for more work on representation of dialogue and multimodal meaning. We discuss challenges of adapting an existing meaning representation to non-speech-based modalities and outline several avenues for expanding Gesture AMR.
Abstract Meaning Representation (AMR) is a simple, expressive semantic framework whose emphasis on predicate-argument structure is effective for many tasks. Nevertheless, AMR lacks a systematic treatment of projection phenomena, making its translation into logical form problematic. We present a translation function from AMR to first order logic using continuation semantics, which allows us to capture the semantic context of an expression in the form of an argument. This is a natural extension of AMR’s original design principles, allowing us to easily model basic projection phenomena such as quantification and negation as well as complex phenomena such as bound variables and donkey anaphora.
We analyze the use and interpretation of modal expressions in a corpus of situated human-robot dialogue and ask how to effectively represent these expressions for automatic learning. We present a two-level annotation scheme for modality that captures both content and intent, integrating a logic-based, semantic representation and a task-oriented, pragmatic representation that maps to our robot’s capabilities. Data from our annotation task reveals that the interpretation of modal expressions in human-robot dialogue is quite diverse, yet highly constrained by the physical environment and asymmetrical speaker/addressee relationship. We sketch a formal model of human-robot common ground in which modality can be grounded and dynamically interpreted.
Under the standard approach to counterfactuals, to determine the meaning of a counterfactual sentence, we consider the “closest” possible world(s) where the antecedent is true, and evaluate the consequent. Building on the standard approach, some researchers have found that the set of worlds to be considered is dependent on context; it evolves with the discourse. Others have focused on how to define the “distance” between possible worlds, using ideas from causal modeling. This paper integrates the two ideas. We present a semantics for counterfactuals that uses a distance measure based on causal laws, that can also change over time. We show how our semantics can be implemented in the Haskell programming language.