Kenton Murray


2024

pdf bib
FINDINGS OF THE IWSLT 2024 EVALUATION CAMPAIGN
Ibrahim Said Ahmad | Antonios Anastasopoulos | Ondřej Bojar | Claudia Borg | Marine Carpuat | Roldano Cattoni | Mauro Cettolo | William Chen | Qianqian Dong | Marcello Federico | Barry Haddow | Dávid Javorský | Mateusz Krubiński | Tsz Kim Lam | Xutai Ma | Prashant Mathur | Evgeny Matusov | Chandresh Maurya | John McCrae | Kenton Murray | Satoshi Nakamura | Matteo Negri | Jan Niehues | Xing Niu | Atul Kr. Ojha | John Ortega | Sara Papi | Peter Polák | Adam Pospíšil | Pavel Pecina | Elizabeth Salesky | Nivedita Sethiya | Balaram Sarkar | Jiatong Shi | Claytone Sikasote | Matthias Sperber | Sebastian Stüker | Katsuhito Sudoh | Brian Thompson | Alex Waibel | Shinji Watanabe | Patrick Wilken | Petr Zemánek | Rodolfo Zevallos
Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024)

This paper reports on the shared tasks organized by the 21st IWSLT Conference. The shared tasks address 7 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, dialect and low-resource speech translation, and Indic languages. The shared tasks attracted 17 teams whose submissions are documented in 27 system papers. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.

pdf bib
Speech Data from Radio Broadcasts for Low Resource Languages
Bismarck Bamfo Odoom | Leibny Paola Garcia Perera | Prangthip Hansanti | Loic Barrault | Christophe Ropers | Matthew Wiesner | Kenton Murray | Alexandre Mourachko | Philipp Koehn
Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024)

We created a collection of speech data for 48 low resource languages. The corpus is extracted from radio broadcasts and processed with novel speech detection and language identification models based on a manually vetted subset of the audio for 10 languages. The data is made publicly available.

pdf bib
JHU IWSLT 2024 Dialectal and Low-resource System Description
Nathaniel Romney Robinson | Kaiser Sun | Cihan Xiao | Niyati Bafna | Weiting Tan | Haoran Xu | Henry Li Xinyuan | Ankur Kejriwal | Sanjeev Khudanpur | Kenton Murray | Paul McNamee
Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024)

Johns Hopkins University (JHU) submitted systems for all eight language pairs in the 2024 Low-Resource Language Track. The main effort of this work revolves around fine-tuning large and publicly available models in three proposed systems: i) end-to-end speech translation (ST) fine-tuning of Seamless4MT v2; ii) ST fine-tuning of Whisper; iii) a cascaded system involving automatic speech recognition with fine-tuned Whisper and machine translation with NLLB. On top of systems above, we conduct a comparative analysis on different training paradigms, such as intra-distillation for NLLB as well as joint training and curriculum learning for SeamlessM4T v2. Our results show that the best-performing approach differs by language pairs, but that i) fine-tuned SeamlessM4T v2 tends to perform best for source languages on which it was pre-trained, ii) multi-task training helps Whisper fine-tuning, iii) cascaded systems with Whisper and NLLB tend to outperform Whisper alone, and iv) intra-distillation helps NLLB fine-tuning.

pdf bib
Narrowing the Gap between Zero- and Few-shot Machine Translation by Matching Styles
Weiting Tan | Haoran Xu | Lingfeng Shen | Shuyue Stella Li | Kenton Murray | Philipp Koehn | Benjamin Van Durme | Yunmo Chen
Findings of the Association for Computational Linguistics: NAACL 2024

Large language models trained primarily in a monolingual setting have demonstrated their ability to generalize to machine translation using zero- and few-shot examples with in-context learning. However, even though zero-shot translations are relatively good, there remains a discernible gap comparing their performance with the few-shot setting. In this paper, we investigate the factors contributing to this gap and find that this gap can largely be closed (for about 70%) by matching the writing styles of the target corpus. Additionally, we explore potential approaches to enhance zero-shot baselines without the need for parallel demonstration examples, providing valuable insights into how these methods contribute to improving translation metrics.

pdf bib
Exploring Geometric Representational Disparities between Multilingual and Bilingual Translation Models
Neha Verma | Kenton Murray | Kevin Duh
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Multilingual machine translation has proven immensely useful for both parameter efficiency and overall performance across many language pairs via complete multilingual parameter sharing. However, some language pairs in multilingual models can see worse performance than in bilingual models, especially in the one-to-many translation setting. Motivated by their empirical differences, we examine the geometric differences in representations from bilingual models versus those from one-to-many multilingual models. Specifically, we compute the isotropy of these representations using intrinsic dimensionality and IsoScore, in order to measure how the representations utilize the dimensions in their underlying vector space. Using the same evaluation data in both models, we find that for a given language pair, its multilingual model decoder representations are consistently less isotropic and occupy fewer dimensions than comparable bilingual model decoder representations. Additionally, we show that much of the anisotropy in multilingual decoder representations can be attributed to modeling language-specific information, therefore limiting remaining representational capacity.

pdf bib
Kreyòl-MT: Building MT for Latin American, Caribbean and Colonial African Creole Languages
Nathaniel Robinson | Raj Dabre | Ammon Shurtz | Rasul Dent | Onenamiyi Onesi | Claire Monroc | Loïc Grobol | Hasan Muhammad | Ashi Garg | Naome Etori | Vijay Murari Tiyyala | Olanrewaju Samuel | Matthew Stutzman | Bismarck Odoom | Sanjeev Khudanpur | Stephen Richardson | Kenton Murray
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

A majority of language technologies are tailored for a small number of high-resource languages, while relatively many low-resource languages are neglected. One such group, Creole languages, have long been marginalized in academic study, though their speakers could benefit from machine translation (MT). These languages are predominantly used in much of Latin America, Africa and the Caribbean. We present the largest cumulative dataset to date for Creole language MT, including 14.5M unique Creole sentences with parallel translations—11.6M of which we release publicly, and the largest bitexts gathered to date for 41 languages—the first ever for 21. In addition, we provide MT models supporting all 41 Creole languages in 172 translation directions. Given our diverse dataset, we produce a model for Creole language MT exposed to more genre diversity then ever before, which outperforms a genre-specific Creole MT model on its own benchmark for 23 of 34 translation directions.

pdf bib
Where are you from? Geolocating Speech and Applications to Language Identification
Patrick Foley | Matthew Wiesner | Bismarck Odoom | Leibny Paola Garcia Perera | Kenton Murray | Philipp Koehn
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

We train models to answer the question, Where are you from? and show how such models can be repurposed for language identification (LID). To our knowledge, this paper is the first to introduce data sources, methods and models to tackle the task of geolocation of speech at a global scale, and the first to explore using geolocation as a proxy-task for LID. Specifically, we explore whether radio broadcasts with known origin can be used to train regression and classification-based models for geolocating speech. We build models on top of self-supervised pretrained models, using attention pooling to qualitatively verify that the model geolocates the speech itself, and not other channel artifacts.The best geolocation models localize speaker origin to around 650km. We confirm the value of speech geolocation as a proxy task by using speech geolocation models for zero-shot LID. Finally, we show that fine-tuning geolocation models for LID outperforms fine-tuning pretrained Wav2Vec2.0 models, and achieves state-of-the-art performance on the FLEURS benchmark.

2023

pdf bib
FINDINGS OF THE IWSLT 2023 EVALUATION CAMPAIGN
Milind Agarwal | Sweta Agrawal | Antonios Anastasopoulos | Luisa Bentivogli | Ondřej Bojar | Claudia Borg | Marine Carpuat | Roldano Cattoni | Mauro Cettolo | Mingda Chen | William Chen | Khalid Choukri | Alexandra Chronopoulou | Anna Currey | Thierry Declerck | Qianqian Dong | Kevin Duh | Yannick Estève | Marcello Federico | Souhir Gahbiche | Barry Haddow | Benjamin Hsu | Phu Mon Htut | Hirofumi Inaguma | Dávid Javorský | John Judge | Yasumasa Kano | Tom Ko | Rishu Kumar | Pengwei Li | Xutai Ma | Prashant Mathur | Evgeny Matusov | Paul McNamee | John P. McCrae | Kenton Murray | Maria Nadejde | Satoshi Nakamura | Matteo Negri | Ha Nguyen | Jan Niehues | Xing Niu | Atul Kr. Ojha | John E. Ortega | Proyag Pal | Juan Pino | Lonneke van der Plas | Peter Polák | Elijah Rippeth | Elizabeth Salesky | Jiatong Shi | Matthias Sperber | Sebastian Stüker | Katsuhito Sudoh | Yun Tang | Brian Thompson | Kevin Tran | Marco Turchi | Alex Waibel | Mingxuan Wang | Shinji Watanabe | Rodolfo Zevallos
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)

This paper reports on the shared tasks organized by the 20th IWSLT Conference. The shared tasks address 9 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, multilingual, dialect and low-resource speech translation, and formality control. The shared tasks attracted a total of 38 submissions by 31 teams. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.

pdf bib
Why Does Zero-Shot Cross-Lingual Generation Fail? An Explanation and a Solution
Tianjian Li | Kenton Murray
Findings of the Association for Computational Linguistics: ACL 2023

Zero-shot cross-lingual transfer is when a multilingual model is trained to perform a task in one language and then is applied to another language. Although the zero-shot cross-lingual transfer approach has achieved success in various classification tasks, its performance on natural language generation tasks falls short in quality and sometimes outputs an incorrect language. In our study, we show that the fine-tuning process learns language invariant representations, which is beneficial for classification tasks but harmful for generation tasks. Motivated by this, we propose a simple method to regularize the model from learning language invariant representations and a method to select model checkpoints without a development set in the target language, both resulting in better generation quality. Experiments on three semantically diverse generation tasks show that our method reduces the accidental translation problem by 68% and improves the ROUGE-L score by 1.5 on average.

pdf bib
Towards Being Parameter-Efficient: A Stratified Sparsely Activated Transformer with Dynamic Capacity
Haoran Xu | Maha Elbayad | Kenton Murray | Jean Maillard | Vedanuj Goswami
Findings of the Association for Computational Linguistics: EMNLP 2023

Mixture-of-experts (MoE) models that employ sparse activation have demonstrated effectiveness in significantly increasing the number of parameters while maintaining low computational requirements per token. However, recent studies have established that MoE models are inherently parameter-inefficient as the improvement in performance diminishes with an increasing number of experts. We hypothesize this parameter inefficiency is a result of all experts having equal capacity, which may not adequately meet the varying complexity requirements of different tokens or tasks. In light of this, we propose Stratified Mixture of Experts (SMoE) models, which feature a stratified structure and can assign dynamic capacity to different tokens. We demonstrate the effectiveness of SMoE on three multilingual machine translation benchmarks, containing 4, 15, and 94 language pairs, respectively. We show that SMoE outperforms multiple state-of-the-art MoE models with the same or fewer parameters.

pdf bib
Findings of the 2023 Conference on Machine Translation (WMT23): LLMs Are Here but Not Quite There Yet
Tom Kocmi | Eleftherios Avramidis | Rachel Bawden | Ondřej Bojar | Anton Dvorkovich | Christian Federmann | Mark Fishel | Markus Freitag | Thamme Gowda | Roman Grundkiewicz | Barry Haddow | Philipp Koehn | Benjamin Marie | Christof Monz | Makoto Morishita | Kenton Murray | Makoto Nagata | Toshiaki Nakazawa | Martin Popel | Maja Popović | Mariya Shmatova
Proceedings of the Eighth Conference on Machine Translation

This paper presents the results of the General Machine Translation Task organised as part of the 2023 Conference on Machine Translation (WMT). In the general MT task, participants were asked to build machine translation systems for any of 8 language pairs (corresponding to 14 translation directions), to be evaluated on test sets consisting of up to four different domains. We evaluate system outputs with professional human annotators using a combination of source-based Direct Assessment and scalar quality metric (DA+SQM).

pdf bib
Condensing Multilingual Knowledge with Lightweight Language-Specific Modules
Haoran Xu | Weiting Tan | Shuyue Li | Yunmo Chen | Benjamin Van Durme | Philipp Koehn | Kenton Murray
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Incorporating language-specific (LS) modules or Mixture-of-Experts (MoE) are proven methods to boost performance in multilingual model performance, but the scalability of these approaches to hundreds of languages or experts tends to be hard to manage. We present Language-specific Matrix Synthesis (LMS), a novel method that addresses the issue. LMS utilizes parameter-efficient and lightweight modules, reducing the number of parameters while outperforming existing methods, e.g., +1.73 BLEU over Switch Transformer on OPUS-100 multilingual translation. Additionally, we introduce Fuse Distillation (FD) to condense multilingual knowledge from multiple LS modules into a single shared module, improving model inference and storage efficiency. Our approach demonstrates superior scalability and performance compared to state-of-the-art methods.

2022

pdf bib
The Importance of Being Parameters: An Intra-Distillation Method for Serious Gains
Haoran Xu | Philipp Koehn | Kenton Murray
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recent model pruning methods have demonstrated the ability to remove redundant parameters without sacrificing model performance. Common methods remove redundant parameters according to the parameter sensitivity, a gradient-based measure reflecting the contribution of the parameters. In this paper, however, we argue that redundant parameters can be trained to make beneficial contributions. We first highlight the large sensitivity (contribution) gap among high-sensitivity and low-sensitivity parameters and show that the model generalization performance can be significantly improved after balancing the contribution of all parameters. Our goal is to balance the sensitivity of all parameters and encourage all of them to contribute equally. We propose a general task-agnostic method, namely intra-distillation, appended to the regular training loss to balance parameter sensitivity. Moreover, we also design a novel adaptive learning method to control the strength of intra-distillation loss for faster convergence. Our experiments show the strong effectiveness of our methods on machine translation, natural language understanding, and zero-shot cross-lingual transfer across up to 48 languages, e.g., a gain of 3.54 BLEU on average across 8 language pairs from the IWSLT’14 dataset.

pdf bib
Strategies for Adapting Multilingual Pre-training for Domain-Specific Machine Translation
Neha Verma | Kenton Murray | Kevin Duh
Proceedings of the 15th biennial conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)

Pretrained multilingual sequence-to-sequence models have been successful in improving translation performance for mid- and lower-resourced languages. However, it is unclear if these models are helpful in the domain adaptation setting, and if so, how to best adapt them to both the domain and translation language pair. Therefore, in this work, we propose two major fine-tuning strategies: our language-first approach first learns the translation language pair via general bitext, followed by the domain via in-domain bitext, and our domain-first approach first learns the domain via multilingual in-domain bitext, followed by the language pair via language pair-specific in-domain bitext. We test our approach on 3 domains at different levels of data availability, and 5 language pairs. We find that models using an mBART initialization generally outperform those using a random Transformer initialization. This holds for languages even outside of mBART’s pretraining set, and can result in improvements of over +10 BLEU. Additionally, we find that via our domain-first approach, fine-tuning across multilingual in-domain corpora can lead to stark improvements in domain adaptation without sourcing additional out-of-domain bitext. In larger domain availability settings, our domain-first approach can be competitive with our language-first approach, even when using over 50X less data.

pdf bib
Findings of the IWSLT 2022 Evaluation Campaign
Antonios Anastasopoulos | Loïc Barrault | Luisa Bentivogli | Marcely Zanon Boito | Ondřej Bojar | Roldano Cattoni | Anna Currey | Georgiana Dinu | Kevin Duh | Maha Elbayad | Clara Emmanuel | Yannick Estève | Marcello Federico | Christian Federmann | Souhir Gahbiche | Hongyu Gong | Roman Grundkiewicz | Barry Haddow | Benjamin Hsu | Dávid Javorský | Vĕra Kloudová | Surafel Lakew | Xutai Ma | Prashant Mathur | Paul McNamee | Kenton Murray | Maria Nǎdejde | Satoshi Nakamura | Matteo Negri | Jan Niehues | Xing Niu | John Ortega | Juan Pino | Elizabeth Salesky | Jiatong Shi | Matthias Sperber | Sebastian Stüker | Katsuhito Sudoh | Marco Turchi | Yogesh Virkar | Alexander Waibel | Changhan Wang | Shinji Watanabe
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

The evaluation campaign of the 19th International Conference on Spoken Language Translation featured eight shared tasks: (i) Simultaneous speech translation, (ii) Offline speech translation, (iii) Speech to speech translation, (iv) Low-resource speech translation, (v) Multilingual speech translation, (vi) Dialect speech translation, (vii) Formality control for speech translation, (viii) Isometric speech translation. A total of 27 teams participated in at least one of the shared tasks. This paper details, for each shared task, the purpose of the task, the data that were released, the evaluation metrics that were applied, the submissions that were received and the results that were achieved.

pdf bib
Por Qué Não Utiliser Alla Språk? Mixed Training with Gradient Optimization in Few-Shot Cross-Lingual Transfer
Haoran Xu | Kenton Murray
Findings of the Association for Computational Linguistics: NAACL 2022

The current state-of-the-art for few-shot cross-lingual transfer learning first trains on abundant labeled data in the source language and then fine-tunes with a few examples on the target language, termed target-adapting. Though this has been demonstrated to work on a variety of tasks, in this paper we show some deficiencies of this approach and propose a one-step mixed training method that trains on both source and target data with stochastic gradient surgery, a novel gradient-level optimization. Unlike the previous studies that focus on one language at a time when target-adapting, we use one model to handle all target languages simultaneously to avoid excessively language-specific models. Moreover, we discuss the unreality of utilizing large target development sets for model selection in previous literature. We further show that our method is both development-free for target languages, and is also able to escape from overfitting issues. We conduct a large-scale experiment on 4 diverse NLP tasks across up to 48 languages. Our proposed method achieves state-of-the-art performance on all tasks and outperforms target-adapting by a large margin, especially for languages that are linguistically distant from the source language, e.g., 7.36% F1 absolute gain on average for the NER task, up to 17.60% on Punjabi.

2021

pdf bib
Everything Is All It Takes: A Multipronged Strategy for Zero-Shot Cross-Lingual Information Extraction
Mahsa Yarmohammadi | Shijie Wu | Marc Marone | Haoran Xu | Seth Ebner | Guanghui Qin | Yunmo Chen | Jialiang Guo | Craig Harman | Kenton Murray | Aaron Steven White | Mark Dredze | Benjamin Van Durme
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Zero-shot cross-lingual information extraction (IE) describes the construction of an IE model for some target language, given existing annotations exclusively in some other language, typically English. While the advance of pretrained multilingual encoders suggests an easy optimism of “train on English, run on any language”, we find through a thorough exploration and extension of techniques that a combination of approaches, both new and old, leads to better performance than any one cross-lingual strategy in particular. We explore techniques including data projection and self-training, and how different pretrained encoders impact them. We use English-to-Arabic IE as our initial example, demonstrating strong performance in this setting for event extraction, named entity recognition, part-of-speech tagging, and dependency parsing. We then apply data projection and self-training to three tasks across eight target languages. Because no single set of techniques performs the best across all tasks, we encourage practitioners to explore various configurations of the techniques described in this work when seeking to improve on zero-shot training.

pdf bib
BERT, mBERT, or BiBERT? A Study on Contextualized Embeddings for Neural Machine Translation
Haoran Xu | Benjamin Van Durme | Kenton Murray
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The success of bidirectional encoders using masked language models, such as BERT, on numerous natural language processing tasks has prompted researchers to attempt to incorporate these pre-trained models into neural machine translation (NMT) systems. However, proposed methods for incorporating pre-trained models are non-trivial and mainly focus on BERT, which lacks a comparison of the impact that other pre-trained models may have on translation performance. In this paper, we demonstrate that simply using the output (contextualized embeddings) of a tailored and suitable bilingual pre-trained language model (dubbed BiBERT) as the input of the NMT encoder achieves state-of-the-art translation performance. Moreover, we also propose a stochastic layer selection approach and a concept of a dual-directional translation model to ensure the sufficient utilization of contextualized embeddings. In the case of without using back translation, our best models achieve BLEU scores of 30.45 for En→De and 38.61 for De→En on the IWSLT’14 dataset, and 31.26 for En→De and 34.94 for De→En on the WMT’14 dataset, which exceeds all published numbers.

pdf bib
Joint Universal Syntactic and Semantic Parsing
Elias Stengel-Eskin | Kenton Murray | Sheng Zhang | Aaron Steven White | Benjamin Van Durme
Transactions of the Association for Computational Linguistics, Volume 9

While numerous attempts have been made to jointly parse syntax and semantics, high performance in one domain typically comes at the price of performance in the other. This trade-off contradicts the large body of research focusing on the rich interactions at the syntax–semantics interface. We explore multiple model architectures that allow us to exploit the rich syntactic and semantic annotations contained in the Universal Decompositional Semantics (UDS) dataset, jointly parsing Universal Dependencies and UDS to obtain state-of-the-art results in both formalisms. We analyze the behavior of a joint model of syntax and semantics, finding patterns supported by linguistic theory at the syntax–semantics interface. We then investigate to what degree joint modeling generalizes to a multilingual setting, where we find similar trends across 8 languages.

pdf bib
Gradual Fine-Tuning for Low-Resource Domain Adaptation
Haoran Xu | Seth Ebner | Mahsa Yarmohammadi | Aaron Steven White | Benjamin Van Durme | Kenton Murray
Proceedings of the Second Workshop on Domain Adaptation for NLP

Fine-tuning is known to improve NLP models by adapting an initial model trained on more plentiful but less domain-salient examples to data in a target domain. Such domain adaptation is typically done using one stage of fine-tuning. We demonstrate that gradually fine-tuning in a multi-step process can yield substantial further gains and can be applied without modifying the model or learning objective.

pdf bib
Data Augmentation by Concatenation for Low-Resource Translation: A Mystery and a Solution
Toan Q. Nguyen | Kenton Murray | David Chiang
Proceedings of the 18th International Conference on Spoken Language Translation (IWSLT 2021)

In this paper, we investigate the driving factors behind concatenation, a simple but effective data augmentation method for low-resource neural machine translation. Our experiments suggest that discourse context is unlikely the cause for concatenation improving BLEU by about +1 across four language pairs. Instead, we demonstrate that the improvement comes from three other factors unrelated to discourse: context diversity, length diversity, and (to a lesser extent) position shifting.

2020

pdf bib
Collecting Verified COVID-19 Question Answer Pairs
Adam Poliak | Max Fleming | Cash Costello | Kenton Murray | Mahsa Yarmohammadi | Shivani Pandya | Darius Irani | Milind Agarwal | Udit Sharma | Shuo Sun | Nicola Ivanov | Lingxi Shang | Kaushik Srinivasan | Seolhwa Lee | Xu Han | Smisha Agarwal | João Sedoc
Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020

We release a dataset of over 2,100 COVID19 related Frequently asked Question-Answer pairs scraped from over 40 trusted websites. We include an additional 24, 000 questions pulled from online sources that have been aligned by experts with existing answered questions from our dataset. This paper describes our efforts in collecting the dataset and summarizes the resulting data. Our dataset is automatically updated daily and available at https://github.com/JHU-COVID-QA/ scraping-qas. So far, this data has been used to develop a chatbot providing users information about COVID-19. We encourage others to build analytics and tools upon this dataset as well.

pdf bib
The JHU Submission to the 2020 Duolingo Shared Task on Simultaneous Translation and Paraphrase for Language Education
Huda Khayrallah | Jacob Bremerman | Arya D. McCarthy | Kenton Murray | Winston Wu | Matt Post
Proceedings of the Fourth Workshop on Neural Generation and Translation

This paper presents the Johns Hopkins University submission to the 2020 Duolingo Shared Task on Simultaneous Translation and Paraphrase for Language Education (STAPLE). We participated in all five language tasks, placing first in each. Our approach involved a language-agnostic pipeline of three components: (1) building strong machine translation systems on general-domain data, (2) fine-tuning on Duolingo-provided data, and (3) generating n-best lists which are then filtered with various score-based techniques. In addi- tion to the language-agnostic pipeline, we attempted a number of linguistically-motivated approaches, with, unfortunately, little success. We also find that improving BLEU performance of the beam-search generated translation does not necessarily improve on the task metric—weighted macro F1 of an n-best list.

2019

pdf bib
Auto-Sizing the Transformer Network: Improving Speed, Efficiency, and Performance for Low-Resource Machine Translation
Kenton Murray | Jeffery Kinnison | Toan Q. Nguyen | Walter Scheirer | David Chiang
Proceedings of the 3rd Workshop on Neural Generation and Translation

Neural sequence-to-sequence models, particularly the Transformer, are the state of the art in machine translation. Yet these neural networks are very sensitive to architecture and hyperparameter settings. Optimizing these settings by grid or random search is computationally expensive because it requires many training runs. In this paper, we incorporate architecture search into a single training run through auto-sizing, which uses regularization to delete neurons in a network over the course of training. On very low-resource language pairs, we show that auto-sizing can improve BLEU scores by up to 3.9 points while removing one-third of the parameters from the model.

pdf bib
Efficiency through Auto-Sizing: Notre Dame NLP’s Submission to the WNGT 2019 Efficiency Task
Kenton Murray | Brian DuSell | David Chiang
Proceedings of the 3rd Workshop on Neural Generation and Translation

This paper describes the Notre Dame Natural Language Processing Group’s (NDNLP) submission to the WNGT 2019 shared task (Hayashi et al., 2019). We investigated the impact of auto-sizing (Murray and Chiang, 2015; Murray et al., 2019) to the Transformer network (Vaswani et al., 2017) with the goal of substantially reducing the number of parameters in the model. Our method was able to eliminate more than 25% of the model’s parameters while suffering a decrease of only 1.1 BLEU.

2018

pdf bib
Correcting Length Bias in Neural Machine Translation
Kenton Murray | David Chiang
Proceedings of the Third Conference on Machine Translation: Research Papers

We study two problems in neural machine translation (NMT). First, in beam search, whereas a wider beam should in principle help translation, it often hurts NMT. Second, NMT has a tendency to produce translations that are too short. Here, we argue that these problems are closely related and both rooted in label bias. We show that correcting the brevity problem almost eliminates the beam problem; we compare some commonly-used methods for doing this, finding that a simple per-word reward works well; and we introduce a simple and quick way to tune this reward using the perceptron algorithm.

2015

pdf bib
Auto-Sizing Neural Networks: With Applications to n-gram Language Models
Kenton Murray | David Chiang
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

2013

pdf bib
QCRI at IWSLT 2013: experiments in Arabic-English and English-Arabic spoken language translation
Hassan Sajjad | Francisco Guzmán | Preslav Nakov | Ahmed Abdelali | Kenton Murray | Fahad Al Obaidli | Stephan Vogel
Proceedings of the 10th International Workshop on Spoken Language Translation: Evaluation Campaign

We describe the Arabic-English and English-Arabic statistical machine translation systems developed by the Qatar Computing Research Institute for the IWSLT’2013 evaluation campaign on spoken language translation. We used one phrase-based and two hierarchical decoders, exploring various settings thereof. We further experimented with three domain adaptation methods, and with various Arabic word segmentation schemes. Combining the output of several systems yielded a gain of up to 3.4 BLEU points over the baseline. Here we also describe a specialized normalization scheme for evaluating Arabic output, which was adopted for the IWSLT’2013 evaluation campaign.

pdf bib
The CMU Machine Translation Systems at WMT 2013: Syntax, Synthetic Translation Options, and Pseudo-References
Waleed Ammar | Victor Chahuneau | Michael Denkowski | Greg Hanneman | Wang Ling | Austin Matthews | Kenton Murray | Nicola Segall | Alon Lavie | Chris Dyer
Proceedings of the Eighth Workshop on Statistical Machine Translation

Search
Co-authors