Recent large language models (LLM) areleveraging human feedback to improve theirgeneration quality. However, human feedbackis costly to obtain, especially during inference.In this work, we propose LLMRefine, aninference time optimization method to refineLLM’s output. The core idea is to usea learned fine-grained feedback model topinpoint defects and guide LLM to refinethem iteratively. Using original LLM as aproposal of edits, LLMRefine searches fordefect-less text via simulated annealing, tradingoff the exploration and exploitation. Weconduct experiments on three text generationtasks, including machine translation, long-form question answering (QA), and topicalsummarization. LLMRefine consistentlyoutperforms all baseline approaches, achievingimprovements up to 1.7 MetricX points ontranslation tasks, 8.1 ROUGE-L on ASQA, 2.2ROUGE-L on topical summarization.
Large language models (LLMs) have demonstrated remarkable potential in handling multilingual machine translation (MMT). In this paper, we systematically investigate the advantages and challenges of LLMs for MMT by answering two questions: 1) How well do LLMs perform in translating massive languages? 2) Which factors affect LLMs’ performance in translation? We thoroughly evaluate eight popular LLMs, including ChatGPT and GPT-4. Our empirical results show that translation capabilities of LLMs are continually involving. GPT-4 has beat the strong supervised baseline NLLB in 40.91% of translation directions but still faces a large gap towards the commercial translation system like Google Translate, especially on low-resource languages. Through further analysis, we discover that LLMs exhibit new working patterns when used for MMT. First, LLM can acquire translation ability in a resource-efficient way and generate moderate translation even on zero-resource languages. Second, instruction semantics can surprisingly be ignored when given in-context exemplars. Third, cross-lingual exemplars can provide better task guidance for low-resource translation than exemplars in the same language pairs. Code will be released at: https://github.com/NJUNLP/MMT-LLM.
VLMs (Vision-Language Models) extend the capabilities of LLMs (Large Language Models) to accept multimodal inputs. Since it has been verified that LLMs can be induced to generate harmful or inaccurate content through specific test cases (termed as Red Teaming), how VLMs perform in similar scenarios, especially with their combination of textual and visual inputs, remains a question. To explore this problem, we present a novel red teaming dataset RTVLM, which encompasses 12 subtasks (e.g., image misleading, multi-modal jailbreaking, face fairness, etc) under 4 primary aspects (faithfulness, privacy, safety, fairness). Our RTVLM is the first red teaming dataset to benchmark current VLMs in terms of these 4 different aspects. Detailed analysis shows that 10 prominent open-sourced VLMs struggle with the red teaming in different degrees and have up to 31% performance gap with GPT-4V. Additionally, we simply apply red teaming alignment to LLaVA-v1.5 with Supervised Fine-tuning (SFT) using RTVLM, and this bolsters the models’ performance with 10% in RTVLM test set, 13% in MM-hallu, and without noticeable decline in MM-Bench, overpassing other LLaVA-based models in similar size with regular alignment data. This reveals that current open-sourced VLMs still lack red teaming alignment. Our code and datasets will be open-sourced.
Recently, there is a surge in interest surrounding video large language models (Video LLMs). However, existing benchmarks fail to provide a comprehensive feedback on the temporal perception ability of Video LLMs. On the one hand, most of them are unable to distinguish between different temporal aspects (e.g., speed, direction) and thus cannot reflect the nuanced performance on these specific aspects. On the other hand, they are limited in the diversity of task formats (e.g., only multi-choice QA), which hinders the understanding of how temporal perception performance may vary across different types of tasks. Motivated by these two problems, we propose the TempCompass benchmark, which introduces a diversity of temporal aspects and task formats. To collect high-quality test data, we devise two novel strategies: (1) In video collection, we construct conflicting videos that share the same static content but differ in a specific temporal aspect, which prevents Video LLMs from leveraging single-frame bias or language priors. (2) To collect the task instructions, we propose a paradigm where humans first annotate meta-information for a video and then an LLM generates the instruction. We also design an LLM-based approach to automatically and accurately evaluate the responses from Video LLMs. Based on TempCompass, we comprehensively evaluate 9 state-of-the-art (SOTA) Video LLMs and 3 Image LLMs, and reveal the discerning fact that these models exhibit notably poor temporal perception ability.
Large Language Models (LLMs), often show strong performance on English tasks, while exhibiting limitations on other languages. What is an LLM’s multilingual capability when it is trained only on certain languages? The underlying mechanism remains unclear. This study endeavors to examine the multilingual capability of LLMs from the vocabulary sharing perspective by conducting an exhaustive analysis across 101 languages. Through the investigation of the performance gap before and after embedding fine-tuning, we discovered four distinct quadrants. By delving into each quadrant we provide actionable and efficient guidelines for tuning these languages. Extensive experiments reveal that existing LLMs possess multilingual capabilities that surpass our expectations, and we can significantly improve the multilingual performance of LLMs based on these attributes of each quadrant .
How can large language models (LLMs) process and translate endangered languages? Many languages lack a large corpus to train a decent LLM; therefore existing LLMs rarely perform well in unseen, endangered languages. On the contrary, we observe that 2000 endangered languages, though without a large corpus, have a grammar book or a dictionary. We propose LingoLLM, a training-free approach to enable an LLM to process unseen languages that hardly occur in its pre-training. Our key insight is to demonstrate linguistic knowledge of an unseen language in an LLM’s prompt, including a dictionary, a grammar book, and morphologically analyzed input text. We implement LingoLLM on top of two models, GPT-4 and Mixtral, and evaluate their performance on 5 tasks across 8 endangered or low-resource languages. Our results show that LingoLLM elevates translation capability from GPT-4’s 0 to 10.5 BLEU for 10 language directions. Our findings demonstrate the tremendous value of linguistic knowledge in the age of LLMs for endangered languages. Our data, code, and model generations will be released to the public. Our data, code, and model generations can be found at https://github.com/LLiLab/llm4endangeredlang.
This tutorial seeks to provide a systematic summary of risks and vulnerabilities in security, privacy and copyright aspects of large language models (LLMs), and most recent solutions to address those issues. We will discuss a broad thread of studies that try to answer the following questions: (i) How do we unravel the adversarial threats that attackers may leverage in the training time of LLMs, especially those that may exist in recent paradigms of instruction tuning and RLHF processes? (ii) How do we guard the LLMs against malicious attacks in inference time, such as attacks based on backdoors and jailbreaking? (iii) How do we ensure privacy protection of user information and LLM decisions for Language Model as-a-Service (LMaaS)? (iv) How do we protect the copyright of an LLM? (v) How do we detect and prevent cases where personal or confidential information is leaked during LLM training? (vi) How should we make policies to control against improper usage of LLM-generated content? In addition, will conclude the discussions by outlining emergent challenges in security, privacy and reliability of LLMs that deserve timely investigation by the community
This paper describes CMU’s submission to the IWSLT 2024 Simultaneous Speech Translation (SST) task for translating English speech to German text in a streaming manner. Our end-to-end speech-to-text (ST) system integrates the WavLM speech encoder, a modality adapter, and the Llama2-7B-Base model as the decoder. We employ a two-stage training approach: initially, we align the representations of speech and text, followed by full fine-tuning. Both stages are trained on MuST-c v2 data with cross-entropy loss. We adapt our offline ST model for SST using a simple fixed hold-n policy. Experiments show that our model obtains an offline BLEU score of 31.1 and a BLEU score of 29.5 under 2 seconds latency on the MuST-C-v2 tst-COMMON.
This work describes CMU’s submission to the IWSLT 2024 Offline Speech Translation (ST) Shared Task for translating English speech to German, Chinese, and Japanese text. We are the first participants to employ a long-form strategy which directly processes unsegmented recordings without the need for a separate voice-activity detection stage (VAD). We show that the Whisper automatic speech recognition (ASR) model has a hallucination problem when applied out-of-the-box to recordings containing non-speech noises, but a simple noisy fine-tuning approach can greatly enhance Whisper’s long-form robustness across multiple domains. Then, we feed English ASR outputs into fine-tuned NLLB machine translation (MT) models which are decoded using COMET-based Minimum Bayes Risk. Our VAD-free ASR+MT cascade is tested on TED talks, TV series, and workout videos and shown to outperform prior winning IWSLT submissions and large open-source models.
In this paper, we present an innovative process-oriented math process reward model called Math-shepherd, which assigns a reward score to each step of math problem solutions. The training of Math-shepherd is achieved using automatically constructed process-wise supervision data, breaking the bottleneck of heavy reliance on manual annotation in existing work. We explore the effectiveness of Math-shepherd in two scenarios: 1) Verification: Math-shepherd is utilized for reranking multiple outputs generated by Large Language Models (LLMs); 2) Reinforcement Learning (RL): Math-shepherd is employed to reinforce LLMs.With Math-shepherd, a series of open-source LLMs demonstrates exceptional performance. For instance, process RL with Math-shepherd significantly enhances Mistral-7B (77.9%→84.1% on GSM8K and 28.6%→33.0% on MATH).The accuracy can be further improved to 89.1% and 43.5% on two benchmarks with verification of Math-shepherd.We believe that automatic process supervision holds significant potential for the future evolution of LLMs.
In this paper, we uncover a positional bias in the evaluation paradigm of adopting large language models (LLMs), e.g., GPT-4, as a referee to score and compare the quality of responses generated by candidate models. We find that the quality ranking of candidate responses can be easily hacked by simply altering their order of appearance in the context. This manipulation allows us to skew the evaluation result, making one model appear considerably superior to the other, e.g., Vicuna-13B could beat ChatGPT on 66 over 80 tested queries with ChatGPT as an evaluator. We propose a simple yet effective calibration framework to address our discovered positional bias.To evaluate the effectiveness of our framework, we manually annotate the “win/tie/lose” outcomes of responses from ChatGPT and Vicuna-13B in the Vicuna Benchmark’s question prompt. Extensive experiments demonstrate that our approach successfully alleviates evaluation bias, resulting in closer alignment with human judgments.
Large vision-language models (LVLMs) excel across diverse tasks involving concrete images from natural scenes. However, their ability to interpret abstract figures, such as geometry shapes and scientific plots, remains limited due to a scarcity of training datasets in scientific domains.To fill this gap, we introduce Multimodal ArXiv, consisting of ArXivCap and ArXivQA, for enhancing LVLMs scientific comprehension.ArXivCap is a figure-caption dataset comprising 6.4M images and 3.9M captions, sourced from 572K ArXiv papers spanning various scientific domains.Drawing from ArXivCap, we introduce ArXivQA, a question-answering dataset generated by prompting GPT-4V based on scientific figures. ArXivQA greatly enhances open-sourced LVLMs’ mathematical reasoning capabilities, achieving a 10.4% absolute accuracy gain on a multimodal mathematical reasoning benchmark.Furthermore, employing ArXivCap, we devise four vision-to-text tasks for benchmarking LVLMs.Evaluation results with state-of-the-art LVLMs underscore their struggle with the nuanced semantics of academic figures, while domain-specific training yields substantial performance gains.Our error analysis uncovers misinterpretations of visual context, recognition errors, and the production of overly simplified captions by current LVLMs, shedding light on future improvements.
Recent studies show that large language models (LLMs) improve their performance through self-feedback on certain tasks while degrade on others. We discovered that such a contrary is due to LLM’s bias in evaluating their own output. In this paper, we formally define LLM’s self-bias – the tendency to favor its own generation – using two statistics. We analyze six LLMs (GPT-4, GPT-3.5, Gemini, LLaMA2, Mixtral and DeepSeek) on translation, constrained text generation, and mathematical reasoning tasks. We find that self-bias is prevalent in all examined LLMs across multiple languages and tasks. Our analysis reveals that while the self-refine pipeline improves the fluency and understandability of model outputs, it further amplifies self-bias. To mitigate such biases, we discover that larger model size and external feedback with accurate assessment can significantly reduce bias in the self-refine pipeline, leading to actual performance improvement in downstream tasks. The code and data are released at https://github.com/xu1998hz/llm_self_bias.
In recent years, instruction tuning has gained increasing attention and emerged as a crucial technique to enhance the capabilities of Large Language Models (LLMs). To construct high-quality instruction datasets, many instruction processing approaches have been proposed, aiming to achieve a delicate balance between data quantity and data quality. Nevertheless, due to inconsistencies that persist among various instruction processing methods, there is no standard open-source instruction processing implementation framework available for the community, which hinders practitioners from further developing and advancing. To facilitate instruction processing research and development, we present EasyInstruct, an easy-to-use instruction processing framework for LLMs, which modularizes instruction generation, selection, and prompting, while also considering their combination and interaction. EasyInstruct is publicly released and actively maintained at Github, along with an online demo app and a demo video for quick-start, calling for broader research centered on instruction data and synthetic data.
State-of-the-art abstractive summarization models still suffer from the content contradiction between the summaries and the input text, which is referred to as the factual inconsistency problem. Recently, a large number of works have also been proposed to evaluate factual consistency or improve it by post-editing methods. However, these post-editing methods typically focus on replacing suspicious entities, failing to identify and modify incorrect content hidden in sentence structures. In this paper, we first verify that the correctable errors can be enriched by leveraging sentence structure pruning operation, and then we propose a post-editing method based on that. In the correction process, the pruning operation on possible errors is performed on the syntactic dependency tree with the guidance of multiple factual evaluation metrics. Experimenting on the FRANK dataset shows a great improvement in factual consistency compared with strong baselines and, when combined with them, can achieve even better performance. All the codes and data will be released on paper acceptance.
Large language models (LLM) not only have revolutionized the field of natural language processing (NLP) but also have the potential to reshape many other fields, e.g., recommender systems (RS). However, most of the related work treats an LLM as a component of the conventional recommendation pipeline (e.g., as a feature extractor), which may not be able to fully leverage the generative power of LLM. Instead of separating the recommendation process into multiple stages, such as score computation and re-ranking, this process can be simplified to one stage with LLM: directly generating recommendations from the complete pool of items. This survey reviews the progress, methods, and future directions of LLM-based generative recommendation by examining three questions: 1) What generative recommendation is, 2) Why RS should advance to generative recommendation, and 3) How to implement LLM-based generative recommendation for various RS tasks. We hope that this survey can provide the context and guidance needed to explore this interesting and emerging topic.
End-to-end Speech Translation (E2E ST) aims to directly translate source speech into target text. Existing ST methods perform poorly when only extremely small speech-text data are available for training. We observe that an ST model’s performance closely correlates with its embedding similarity between speech and source transcript. In this paper, we propose Word-Aligned COntrastive learning (WACO), a simple and effective method for extremely low-resource speech-to-text translation. Our key idea is bridging word-level representations for both speech and text modalities via contrastive learning. We evaluate WACO and other methods on the MuST-C dataset, a widely used ST benchmark, and on a low-resource direction Maltese-English from IWSLT 2023. Our experiments demonstrate that WACO outperforms the best baseline by 9+ BLEU points with only 1-hour parallel ST data. Code is available at https://github.com/owaski/WACO.
Is it possible to train a general metric for evaluating text generation quality without human-annotated ratings? Existing learned metrics either perform unsatisfactory across text generation tasks or require human ratings for training on specific tasks. In this paper, we propose SEScore2, a self-supervised approach for training a model-based metric for text generation evaluation. The key concept is to synthesize realistic model mistakes by perturbing sentences retrieved from a corpus. We evaluate SEScore2 and previous methods on four text generation tasks across three languages. SEScore2 outperforms all prior unsupervised metrics on four text generation evaluation benchmarks, with an average Kendall improvement of 0.158. Surprisingly, SEScore2 even outperforms the supervised BLEURT and COMET on multiple text generation tasks.
Large language models (LLMs) have been widely studied for their ability to store and utilize positive knowledge. However, negative knowledge, such as “lions don’t live in the ocean”, is also ubiquitous in the world but rarely mentioned explicitly in text. What do LLMs know about negative knowledge?This work examines the ability of LLMs on negative commonsense knowledge. We design a constrained keywords-to-sentence generation task (CG) and a Boolean question answering task (QA) to probe LLMs.Our experiments reveal that LLMs frequently fail to generate valid sentences grounded in negative commonsense knowledge, yet they can correctly answer polar yes-or-no questions. We term this phenomenon the belief conflict of LLMs.Our further analysis shows that statistical shortcuts and negation reporting bias from language modeling pre-training cause this conflict.
How can we extend a pre-trained model to many language understanding tasks, without labeled or additional unlabeled data? Pre-trained language models (PLMs) have been effective for a wide range of NLP tasks. However, existing approaches either require fine-tuning on downstream labeled datasets or manually constructing proper prompts. In this paper, we propose nonparametric prompting PLM (NPPrompt) for fully zero-shot language understanding. Unlike previous methods, NPPrompt uses only pre-trained language models and does not require any labeled data or additional raw corpus for further fine-tuning, nor does it rely on humans to construct a comprehensive set of prompt label words. We evaluate NPPrompt against previous major few-shot and zero-shot learning methods on diverse NLP tasks: including text classification, text entailment, similar text retrieval, paraphrasing, and multiple-choice question answering. Experimental results demonstrate that our NPPrompt outperforms the previous best fully zero-shot method by big margins, with absolute gains of 12.8% in accuracy on text classification and 15.6% on the GLUE benchmark. Our source code is available at https://anonymous.4open.science/r/NPPrompt.
Image-text retrieval is a core task in the multi-modal domain, which arises a lot of attention from both research and industry communities. Recently, the booming of visual-language pre-trained (VLP) models has greatly enhanced the performance of cross-modal retrieval. However, the fine-grained interactions between objects from different modalities are far from well-established. This issue becomes more severe in the e-commerce domain, which lacks sufficient training data and fine-grained cross-modal knowledge. To alleviate the problem, this paper proposes a novel e-commerce knowledge-enhanced VLP model FashionKLIP. We first automatically establish a multi-modal conceptual knowledge graph from large-scale e-commerce image-text data, and then inject the prior knowledge into the VLP model to align across modalities at the conceptual level. The experiments conducted on a public benchmark dataset demonstrate that FashionKLIP effectively enhances the performance of e-commerce image-text retrieval upon state-of-the-art VLP models by a large margin. The application of the method in real industrial scenarios also proves the feasibility and efficiency of FashionKLIP.
Syllogistic reasoning, a typical form of deductive reasoning, is a critical capability widely required in natural language understanding tasks, such as text entailment and question answering. To better facilitate research on syllogistic reasoning, we develop a benchmark called SylloBase that differs from existing syllogistic datasets in three aspects: (1) Covering a complete taxonomy of syllogism reasoning patterns; (2) Containing both automatically and manually constructed samples; and (3) Involving both the generation and understanding tasks. We automatically construct 50k template-based syllogism samples by mining syllogism patterns from Wikidata and ConceptNet. To improve our dataset’s naturalness and challenge, we apply GPT-3 to paraphrase the template-based data and further manually rewrite 1,000 samples as the test set. State-of-the-art pre-trained language models can achieve the best generation ROUGE-L of 38.72 by T5 and the best multi-choice accuracy of 72.77% by RoBERTa on SylloBase, which indicates the great challenge of learning diverse syllogistic reasoning types on SylloBase. Our datasets are released at https://github.com/casually-PYlearner/SYLLOBASE.
Federated Multilingual Neural Machine Translation (Fed-MNMT) has emerged as a promising paradigm for institutions with limited language resources. This approach allows multiple institutions to act as clients and train a unified model through model synchronization, rather than collecting sensitive data for centralized training. This significantly reduces the cost of corpus collection and preserves data privacy. However, as pre-trained language models (PLMs) continue to increase in size, the communication cost for transmitting parameters during synchronization has become a training speed bottleneck. In this paper, we propose a communication-efficient Fed-MNMT framework that addresses this issue by keeping PLMs frozen and only transferring lightweight adapter modules between clients. Since different language pairs exhibit substantial discrepancies in data distributions, adapter parameters of clients may conflict with each other. To tackle this, we explore various clustering strategies to group parameters for integration and mitigate the negative effects of conflicting parameters. Experimental results demonstrate that our framework reduces communication cost by over 98% while achieving similar or even better performance compared to competitive baselines. Further analysis reveals that clustering strategies effectively solve the problem of linguistic discrepancy and pruning adapter modules further improves communication efficiency.
Grammatical error correction (GEC) aims to correct errors in given sentences and is significant to many downstream natural language understanding tasks. Recent work introduces the idea of grammatical error detection (GED) to improve the GEC task performance. In contrast, these explicit multi-stage works propagate and amplify the problem of misclassification of the GED module. To introduce more convincing error type information, we propose an end-to-end framework in this paper, which Leverages Error Type (LET) information in the generation process. First, the input text is fed into a classification module to obtain the error type corresponding to each token. Then, we introduce the category information into the decoder’s input and cross-attention module in two ways, respectively. Experiments on various datasets show that our proposed method outperforms existing methods by a clear margin.
Contrastive Language-Image Pre-training (CLIP) formulates image classification as an image-to-text matching task, i.e., matching images to the corresponding natural language descriptions instead of discrete category IDs. This allows for open-vocabulary visual recognition, where the model can recognize images from an open class set (also known as an open vocabulary) in a zero-shot manner. However, evaluating the openness of CLIP-like models is challenging, as the models are open to arbitrary vocabulary in theory, but their accuracy varies in practice. To address this, we resort to an incremental perspective to assess the openness through vocabulary expansions, and define extensibility to measure a model’s ability to handle novel classes. Our evaluation shows that CLIP-like models are not truly open, and their performance deteriorates as the vocabulary expands. We further dissect the feature space of CLIP from the perspectives of representation alignment and uniformity. Our investigation reveals that the overestimation of openness is due to confusion among competing text features, rather than a failure to capture the similarity between image features and text features of novel classes. We hope that our investigation and analysis will facilitate future research on the CLIP openness issue.
Multilingual neural machine translation (MNMT) aims to build a unified model for many language directions. Existing monolithic models for MNMT encounter two challenges: parameter interference among languages and inefficient inference for large models. In this paper, we revisit the classic multi-way structures and develop a detachable model by assigning each language (or group of languages) to an individual branch that supports plug-and-play training and inference. To address the needs of learning representations for all languages in a unified space, we propose a novel efficient training recipe, upon which we build an effective detachable model, Lego-MT.For a fair comparison, we collect data from OPUS and build a translation benchmark covering 433 languages and 1.3B parallel data. Experiments show that Lego-MT with 1.2B parameters brings an average gain of 3.2 spBLEU. It even outperforms M2M-100 with 12B parameters. The proposed training recipe brings a 28.2× speedup over the conventional multi-way training method.code and data repo: https://github.com/CONE-MT/Lego-MT.git.
Recently, Large Language Models (LLMs) have been serving as general-purpose interfaces, posing a significant demand for comprehensive visual knowledge. However, it remains unclear how well current LLMs and their visually augmented counterparts (VaLMs) can master visual commonsense knowledge. To investigate this, we propose ImageNetVC, a human-annotated dataset specifically designed for zero- and few-shot visual commonsense evaluation across 1,000 ImageNet categories. Utilizing ImageNetVC, we benchmark the fundamental visual commonsense knowledge of both unimodal LLMs and VaLMs. Furthermore, we analyze the factors affecting the visual commonsense knowledge of large-scale models, providing insights into the development of language models enriched with visual commonsense knowledge. Our code and dataset are available at https://github.com/hemingkx/ImageNetVC.
Recent large language models (LLMs) are promising for making decisions in grounded environments. However, LLMs frequently fail in complex decision-making tasks due to the misalignment between the pre-trained knowledge in LLMs and the actual rules in the environment. Existing methods require either costly gradient computation or lengthy in-context demonstrations. In this paper, we propose AutoPlan, an approach to guide LLM-based agents to accomplish interactive decision-making tasks. AutoPlan augments the LLM prompt with a task-solving plan and optimizes it through iterative experience collection and reflection. Our experiments show that AutoPlan, though using no in-context demonstrations, achieves success rates on par with the baselines using human-written demonstrations on ALFWorld and even outperforms them by 8% on HotpotQA. The code is available at https://github.com/owaski/AutoPlan.
Multilingual understanding models (or encoder-based), pre-trained via masked language modeling, have achieved promising results on many language understanding tasks (e.g., mBERT). However, these models are not capable of generating high-quality text compared with decoder-based causal language models. Can we transform a pre-trained language understanding model into an effective language generation model? We propose a Semantic-Guided Alignment-then-Denoising (SGA) approach to adapt a multilingual encoder to a multilingual generator with a small number of additional parameters. Experiments show that the proposed approach is an effective adaption method, outperforming widely-used initialization-based methods with gains of 9.4 BLEU on machine translation, 8.1 Rouge-L on question generation, and 5.5 METEOR on story generation on XLM-Rlarge. On the other hand, we observe that XLM-R is still inferior to mBART in supervised settings despite better results on zero-shot settings, indicating that more exploration is required to make understanding models strong generators. Our code is available at https://github.com/chengzhipanpan/XLMR4MT.
Previous studies have shown that large language models (LLMs) like GPTs store massive factual knowledge in their parameters. However, the stored knowledge could be false or outdated. Traditional knowledge editing methods refine LLMs via fine-tuning on texts containing specific knowledge. However, with the increasing scales of LLMs, these gradient-based approaches bring large computation costs. The trend of model-as-a-service also makes it impossible to modify knowledge in black-box LMs. Inspired by in-context learning (ICL), a new paradigm based on demonstration contexts without parameter updating, we explore whether ICL can edit factual knowledge. To answer this question, we give a comprehensive empirical study of ICL strategies. Experiments show that in-context knowledge editing (IKE), without any gradient and parameter updating, achieves a competitive success rate compared to gradient-based methods on GPT-J (6B) but with much fewer side effects, including less over-editing on similar but unrelated facts and less knowledge forgetting on previously stored knowledge. We also apply the method to larger LMs with tens or hundreds of parameters like OPT-175B, which shows the scalability of our method. The code is available at https://github.com/pkunlp-icler/IKE.
Automatically evaluating the quality of language generation is critical. Although recent learned metrics show high correlation with human judgement, these metrics do not provide explicit explanation of their verdict, nor associate the scores with defects in the generated text. To address this limitation, we present INSTRUCTSCORE, a fine-grained explainable evaluation metric for text generation. By harnessing both explicit human instruction and the implicit knowledge of GPT-4, we fine-tune a text evaluation metric based on LLaMA, producing both a score for generated text and a human readable diagnostic report. We evaluate INSTRUCTSCORE on a variety of generation tasks, including translation, captioning, data-to-text, and commonsense generation. Experiments show that our 7B model surpasses all other unsupervised metrics, including those based on 175B GPT-3 and GPT-4. Surprisingly, our INSTRUCTSCORE, even without direct supervision from human-rated data, achieves performance levels on par with state-of-the-art metrics like COMET22, which were fine-tuned on human ratings.
In-context learning (ICL) emerges as a promising capability of large language models (LLMs) by providing them with demonstration examples to perform diverse tasks. However, the underlying mechanism of how LLMs learn from the provided context remains under-explored. In this paper, we investigate the working mechanism of ICL through an information flow lens. Our findings reveal that label words in the demonstration examples function as anchors: (1) semantic information aggregates into label word representations during the shallow computation layers’ processing; (2) the consolidated information in label words serves as a reference for LLMs’ final predictions. Based on these insights, we introduce an anchor re-weighting method to improve ICL performance, a demonstration compression technique to expedite inference, and an analysis framework for diagnosing ICL errors in GPT2-XL. The promising applications of our findings again validate the uncovered ICL working mechanism and pave the way for future studies.
Large language models (LLMs) have demonstrated their potential to refine their generation based on their own feedback. However, the feedback from LLM itself is often inaccurate, thereby limiting its benefits. In this paper, we propose Study Assistant for Large LAnguage Model (SALAM), a novel framework with an auxiliary agent to assist the main LLM in learning from mistakes through interactive cooperation. In the gathering phase, the student assistant agent probes the main LLM, analyzes its errors, and collects the interaction in a mistake memory. During the examination phase, the study assistant provides guidelines by retrieving relevant cases to help the main LLM anticipate and avoid similar errors. We first investigate the effectiveness of a general study assistant and then customize it to provide LLM-specific guidance through imitation learning from successful guidance experiences. Our experiments on three LLMs using two challenging frameworks demonstrate that SALAM can significantly boost LLMs by an accuracy margin of up to 6.6 on BBH and 12.6 on BBQ.
Language models (LMs) gradually become general-purpose interfaces in the interactive and embodied world, where the understanding of physical concepts is an essential prerequisite. However, it is unclear whether LMs can understand physical concepts in the human world. To investigate this, we design a benchmark VEC that covers the tasks of (i) Visual concepts, such as the shape and material of objects, and (ii) Embodied Concepts, learned from the interaction with the world such as the temperature of objects. Our zero (few)-shot prompting results show that the understanding of certain visual concepts emerges as scaling up LMs, but there are still basic concepts to which the scaling law does not apply. For example, OPT-175B performs close to humans with a zero-shot accuracy of 85% on the material concept, yet behaves like random guessing on the mass concept. Instead, vision-augmented LMs such as CLIP and BLIP achieve a human-level understanding of embodied concepts. Analysis indicates that the rich semantics in visual representation can serve as a valuable source of embodied knowledge. Inspired by this, we propose a distillation method to transfer embodied knowledge from VLMs to LMs, achieving performance gain comparable with that by scaling up parameters of LMs 134×. Our dataset is available at https://github.com/TobiasLee/VEC.
This paper presents PlayGround’s submission to the AmericasNLP 2023 shared task on machine translation (MT) into indigenous languages. We finetuned NLLB-600M, a multilingual MT model pre-trained on Flores-200, on 10 low-resource language directions and examined the effectiveness of weight averaging and back translation. Our experiments showed that weight averaging, on average, led to a 0.0169 improvement in the ChrF++ score. Additionally, we found that back translation resulted in a 0.008 improvement in the ChrF++ score.
Large language models are shown to memorize privacy information such as social security numbers in training data. Given the sheer scale of the training corpus, it is challenging to screen and filter these privacy data, either manually or automatically. In this paper, we propose Confidentially Redacted Training (CRT), a method to train language generation models while protecting the confidential segments. We borrow ideas from differential privacy (which solves a related but distinct problem) and show that our method is able to provably prevent unintended memorization by randomizing parts of the training process. Moreover, we show that redaction with an approximately correct screening policy amplifies the confidentiality guarantee. We implement the method for both LSTM and GPT language models. Our experimental results show that the models trained by CRT obtain almost the same perplexity while preserving strong confidentiality.
How can we learn unified representations for spoken utterances and their written text? Learning similar representations for semantically similar speech and text is important for speech translation. To this end, we propose ConST, a cross-modal contrastive learning method for end-to-end speech-to-text translation. We evaluate ConST and a variety of previous baselines on a popular benchmark MuST-C. Experiments show that the proposed ConST consistently outperforms the previous methods, and achieves an average BLEU of 29.4. The analysis further verifies that ConST indeed closes the representation gap of different modalities — its learned representation improves the accuracy of cross-modal speech-text retrieval from 4% to 88%. Code and models are available at https://github.com/ReneeYe/ConST.
In modern recommender systems, there are usually comments or reviews from users that justify their ratings for different items. Trained on such textual corpus, explainable recommendation models learn to discover user interests and generate personalized explanations. Though able to provide plausible explanations, existing models tend to generate repeated sentences for different items or empty sentences with insufficient details. This begs an interesting question: can we immerse the models in a multimodal environment to gain proper awareness of real-world concepts and alleviate above shortcomings? To this end, we propose a visually-enhanced approach named METER with the help of visualization generation and text–image matching discrimination: the explainable recommendation model is encouraged to visualize what it refers to while incurring a penalty if the visualization is incongruent with the textual explanation. Experimental results and a manual assessment demonstrate that our approach can improve not only the text quality but also the diversity and explainability of the generated explanations.
How to find proper moments to generate partial sentence translation given a streaming speech input? Existing approaches waiting-and-translating for a fixed duration often break the acoustic units in speech, since the boundaries between acoustic units in speech are not even. In this paper, we propose MoSST, a simple yet effective method for translating streaming speech content. Given a usually long speech sequence, we develop an efficient monotonic segmentation module inside an encoder-decoder model to accumulate acoustic information incrementally and detect proper speech unit boundaries for the input in speech translation task. Experiments on multiple translation directions of the MuST-C dataset show that outperforms existing methods and achieves the best trade-off between translation quality (BLEU) and latency. Our code is available at https://github.com/dqqcasia/mosst.
Currently, masked language modeling (e.g., BERT) is the prime choice to learn contextualized representations. Due to the pervasiveness, it naturally raises an interesting question: how do masked language models (MLMs) learn contextual representations? In this work, we analyze the learning dynamics of MLMs and find that it adopts sampled embeddings as anchors to estimate and inject contextual semantics to representations, which limits the efficiency and effectiveness of MLMs. To address these problems, we propose TACO, a simple yet effective representation learning approach to directly model global semantics. To be specific, TACO extracts and aligns contextual semantics hidden in contextualized representations to encourage models to attend global semantics when generating contextualized representations. Experiments on the GLUE benchmark show that TACO achieves up to 5x speedup and up to 1.2 points average improvement over MLM.
How to learn a better speech representation for end-to-end speech-to-text translation (ST) with limited labeled data? Existing techniques often attempt to transfer powerful machine translation (MT) capabilities to ST, but neglect the representation discrepancy across modalities. In this paper, we propose the Speech-TExt Manifold Mixup (STEMM) method to calibrate such discrepancy. Specifically, we mix up the representation sequences of different modalities, and take both unimodal speech sequences and multimodal mixed sequences as input to the translation model in parallel, and regularize their output predictions with a self-learning framework. Experiments on MuST-C speech translation benchmark and further analysis show that our method effectively alleviates the cross-modal representation discrepancy, and achieves significant improvements over a strong baseline on eight translation directions.
Artificial Intelligence (AI), along with the recent progress in biomedical language understanding, is gradually offering great promise for medical practice. With the development of biomedical language understanding benchmarks, AI applications are widely used in the medical field. However, most benchmarks are limited to English, which makes it challenging to replicate many of the successes in English for other languages. To facilitate research in this direction, we collect real-world biomedical data and present the first Chinese Biomedical Language Understanding Evaluation (CBLUE) benchmark: a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification, and an associated online platform for model evaluation, comparison, and analysis. To establish evaluation on these tasks, we report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling.
Recently, parallel text generation has received widespread attention due to its success in generation efficiency. Although many advanced techniques are proposed to improve its generation quality, they still need the help of an autoregressive model for training to overcome the one-to-many multi-modal phenomenon in the dataset, limiting their applications. In this paper, we propose GLAT, which employs the discrete latent variables to capture word categorical information and invoke an advanced curriculum learning technique, alleviating the multi-modality problem. Experiment results show that our method outperforms strong baselines without the help of an autoregressive model, which further broadens the application scenarios of the parallel decoding paradigm.
Pre-Trained Models (PTMs) have reshaped the development of Natural Language Processing (NLP) and achieved significant improvement in various benchmarks. Yet, it is not easy for industrial practitioners to obtain high-performing PTM-based models without a large amount of labeled training data and deploy them online with fast inference speed. To bridge this gap, EasyNLP is designed to make it easy to build NLP applications, which supports a comprehensive suite of NLP algorithms. It further features knowledge-enhanced pre-training, knowledge distillation and few-shot learning functionalities, and provides a unified framework of model training, inference and deployment for real-world applications. EasyNLP has powered over ten business units within Alibaba Group and is seamlessly integrated to the Platform of AI (PAI) products on Alibaba Cloud. The source code of EasyNLP is released at GitHub (https://github.com/alibaba/EasyNLP).
We present an open-source and extensible knowledge extraction toolkit DeepKE, supporting complicated low-resource, document-level and multimodal scenarios in the knowledge base population. DeepKE implements various information extraction tasks, including named entity recognition, relation extraction and attribute extraction. With a unified framework, DeepKE allows developers and researchers to customize datasets and models to extract information from unstructured data according to their requirements. Specifically, DeepKE not only provides various functional modules and model implementation for different tasks and scenarios but also organizes all components by consistent frameworks to maintain sufficient modularity and extensibility. We release the source code at GitHub in https://github.com/zjunlp/DeepKE with Google Colab tutorials and comprehensive documents for beginners. Besides, we present an online system in http://deepke.openkg.cn/EN/re_doc_show.html for real-time extraction of various tasks, and a demo video.
How to learn highly compact yet effective sentence representation? Pre-trained language models have been effective in many NLP tasks. However, these models are often huge and produce large sentence embeddings. Moreover, there is a big performance gap between large and small models. In this paper, we propose Homomorphic Projective Distillation (HPD) to learn compressed sentence embeddings. Our method augments a small Transformer encoder model with learnable projection layers to produce compact representations while mimicking a large pre-trained language model to retain the sentence representation quality. We evaluate our method with different model sizes on both semantic textual similarity (STS) and semantic retrieval (SR) tasks. Experiments show that our method achieves 2.7-4.5 points performance gain on STS tasks compared with previous best representations of the same size. In SR tasks, our method improves retrieval speed (8.2×) and memory usage (8.0×) compared with state-of-the-art large models. Our implementation is available at https://github.com/XuandongZhao/HPD.
This paper does not aim at introducing a novel model for document-level neural machine translation. Instead, we head back to the original Transformer model and hope to answer the following question: Is the capacity of current models strong enough for document-level translation? Interestingly, we observe that the original Transformer with appropriate training techniques can achieve strong results for document translation, even with a length of 2000 words. We evaluate this model and several recent approaches on nine document-level datasets and two sentence-level datasets across six languages. Experiments show that document-level Transformer models outperforms sentence-level ones and many previous methods in a comprehensive set of metrics, including BLEU, four lexical indices, three newly proposed assistant linguistic indicators, and human evaluation.
The ability to recognize analogies is fundamental to human cognition. Existing benchmarks to test word analogy do not reveal the underneath process of analogical reasoning of neural models. Holding the belief that models capable of reasoning should be right for the right reasons, we propose a first-of-its-kind Explainable Knowledge-intensive Analogical Reasoning benchmark (E-KAR). Our benchmark consists of 1,655 (in Chinese) and 1,251 (in English) problems sourced from the Civil Service Exams, which require intensive background knowledge to solve. More importantly, we design a free-text explanation scheme to explain whether an analogy should be drawn, and manually annotate them for each and every question and candidate answer. Empirical results suggest that this benchmark is very challenging for some state-of-the-art models for both explanation generation and analogical question answering tasks, which invites further research in this area.
Syntactic structure has long been argued to be potentially useful for enforcing accurate word alignment and improving generalization performance of machine translation. Unfortunately, existing wisdom demonstrates its significance by considering only the syntactic structure of source tokens, neglecting the rich structural information from target tokens and the structural similarity between the source and target sentences. In this work, we propose to incorporate the syntactic structure of both source and target tokens into the encoder-decoder framework, tightly correlating the internal logic of word alignment and machine translation for multi-task learning. Particularly, we won’t leverage any annotated syntactic graph of the target side during training, so we introduce Dynamic Graph Convolution Networks (DGCN) on observed target tokens to sequentially and simultaneously generate the target tokens and the corresponding syntactic graphs, and further guide the word alignment. On this basis, Hierarchical Graph Random Walks (HGRW) are performed on the syntactic graphs of both source and target sides, for incorporating structured constraints on machine translation outputs. Experiments on four publicly available language pairs verify that our method is highly effective in capturing syntactic structure in different languages, consistently outperforming baselines in alignment accuracy and demonstrating promising results in translation quality.
Multimodal named entity recognition and relation extraction (MNER and MRE) is a fundamental and crucial branch in information extraction. However, existing approaches for MNER and MRE usually suffer from error sensitivity when irrelevant object images incorporated in texts. To deal with these issues, we propose a novel Hierarchical Visual Prefix fusion NeTwork (HVPNeT) for visual-enhanced entity and relation extraction, aiming to achieve more effective and robust performance. Specifically, we regard visual representation as pluggable visual prefix to guide the textual representation for error insensitive forecasting decision. We further propose a dynamic gated aggregation strategy to achieve hierarchical multi-scaled visual features as visual prefix for fusion. Extensive experiments on three benchmark datasets demonstrate the effectiveness of our method, and achieve state-of-the-art performance.
We introduce MTG, a new benchmark suite for training and evaluating multilingual text generation. It is the first-proposed multilingual multiway text generation dataset with the largest human-annotated data (400k). It includes four generation tasks (story generation, question generation, title generation and text summarization) across five languages (English, German, French, Spanish and Chinese). The multiway setup enables testing knowledge transfer capabilities for a model across languages and tasks. Using MTG, we train and analyze several popular multilingual generation models from different aspects. Our benchmark suite fosters model performance enhancement with more human-annotated parallel data. It provides comprehensive evaluations with diverse generation scenarios. Code and data are available at https://github.com/zide05/MTG.
Text-to-Image Synthesis (TIS) is a popular task to convert natural language texts into realistic images. Recently, transformer-based TIS models (such as DALL-E) have been proposed using the encoder-decoder architectures. Yet, these billion-scale TIS models are difficult to tune and deploy in resource-constrained environments. In addition, there is a lack of language-specific TIS benchmarks for Chinese, together with high-performing models with moderate sizes. In this work, we present ARTIST, A tRansformer-based Chinese Text-to-Image SynThesizer for high-resolution image generation. In ARTIST, the rich linguistic and relational knowledge facts are injected into the model to ensure better model performance without the usage of ultra-large models. We further establish a large-scale Chinese TIS benchmark with the re-production results of state-of-the-art transformer-based TIS models.Results show ARTIST outperforms previous approaches.
Few-shot text matching is a more practical technique in natural language processing (NLP) to determine whether two texts are semantically identical. They primarily design patterns to reformulate text matching into a pre-trained task with uniform prompts across all instances. But they fail to take into account the connection between prompts and instances. This paper argues that dynamically strengthening the correlation between particular instances and the prompts is necessary because fixed prompts cannot adequately fit all diverse instances in inference. We suggest IGATE: Instance-Guided prompt leArning for few-shoT tExt matching, a novel pluggable prompt learning method. The gate mechanism used by IGATE, which is between the embedding and the PLM encoders, makes use of the semantics of instances to regulate the effects of the gate on the prompt tokens. The experimental findings show that IGATE achieves SOTA performance on MRPC and QQP, outperforming strong baselines. GitHub will host the release of codes.
How can we protect the intellectual property of trained NLP models? Modern NLP models are prone to stealing by querying and distilling from their publicly exposed APIs. However, existing protection methods such as watermarking only work for images but are not applicable to text. We propose Distillation-Resistant Watermarking (DRW), a novel technique to protect NLP models from being stolen via distillation. DRW protects a model by injecting watermarks into the victim’s prediction probability corresponding to a secret key and is able to detect such a key by probing a suspect model. We prove that a protected model still retains the original accuracy within a certain bound. We evaluate DRW on a diverse set of NLP tasks including text classification, part-of-speech tagging, and named entity recognition. Experiments show that DRW protects the original model and detects stealing suspects at 100% mean average precision for all four tasks while the prior method fails on two.
Previous literature has proved that Pretrained Language Models (PLMs) can store factual knowledge. However, we find that facts stored in the PLMs are not always correct. It motivates us to explore a fundamental question: How do we calibrate factual knowledge in PLMs without re-training from scratch? In this work, we propose a simple and lightweight method CaliNet to achieve this goal. To be specific, we first detect whether PLMs can learn the right facts via a contrastive score between right and fake facts. If not, we then use a lightweight method to add and adapt new parameters to specific factual texts. Experiments on the knowledge probing task show the calibration effectiveness and efficiency. In addition, through closed-book question answering, we find that the calibrated PLM possesses knowledge generalization ability after finetuning.Beyond the calibration performance, we further investigate and visualize the knowledge calibration mechanism.
Investigating better ways to reuse the released pre-trained language models (PLMs) can significantly reduce the computational cost and the potential environmental side-effects. This paper explores a novel PLM reuse paradigm, Knowledge Integration (KI). Without human annotations available, KI aims to merge the knowledge from different teacher-PLMs, each of which specializes in a different classification problem, into a versatile student model. To achieve this, we first derive the correlation between virtual golden supervision and teacher predictions. We then design a Model Uncertainty–aware Knowledge Integration (MUKI) framework to recover the golden supervision for the student. Specifically, MUKI adopts Monte-Carlo Dropout to estimate model uncertainty for the supervision integration. An instance-wise re-weighting mechanism based on the margin of uncertainty scores is further incorporated, to deal with the potential conflicting supervision from teachers.Experimental results demonstrate that MUKI achieves substantial improvements over baselines on benchmark datasets. Further analysis shows that MUKI can generalize well for merging teacher models with heterogeneous architectures, and even teachers major in cross-lingual datasets.
Is it possible to build a general and automatic natural language generation (NLG) evaluation metric? Existing learned metrics either perform unsatisfactorily or are restricted to tasks where large human rating data is already available. We introduce SESCORE, a model-based metric that is highly correlated with human judgements without requiring human annotation, by utilizing a novel, iterative error synthesis and severity scoring pipeline. This pipeline applies a series of plausible errors to raw text and assigns severity labels by simulating human judgements with entailment. We evaluate SESCORE against existing metrics by comparing how their scores correlate with human ratings. SESCORE outperforms all prior unsupervised metrics on multiple diverse NLG tasks including machine translation, image captioning, and WebNLG text generation. For WMT 20/21En-De and Zh-En, SESCORE improve the average Kendall correlation with human judgement from 0.154 to 0.195. SESCORE even achieves comparable performance to the best supervised metric COMET, despite receiving no human annotated training data.
Scientific paper summarization is always challenging in Natural Language Processing (NLP) since it is hard to collect summaries from such long and complicated text. We observe that previous works tend to extract summaries from the head of the paper, resulting in information incompleteness. In this work, we present SAPGraph to utilize paper structure for solving this problem. SAPGraph is a scientific paper extractive summarization framework based on a structure-aware heterogeneous graph, which models the document into a graph with three kinds of nodes and edges based on structure information of facets and knowledge. Additionally, we provide a large-scale dataset of COVID-19-related papers, CORD-SUM. Experiments on CORD-SUM and ArXiv datasets show that SAPGraph generates more comprehensive and valuable summaries compared to previous works.
Training speech translation (ST) models requires large and high-quality datasets. MuST-C is one of the most widely used ST benchmark datasets. It contains around 400 hours of speech-transcript-translation data for each of the eight translation directions. This dataset passes several quality-control filters during creation. However, we find that MuST-C still suffers from three major quality issues: audiotext misalignment, inaccurate translation, and unnecessary speaker’s name. What are the impacts of these data quality issues for model development and evaluation? In this paper, we propose an automatic method to fix or filter the above quality issues, using English-German (En-De) translation as an example. Our experiments show that ST models perform better on clean test sets, and the rank of proposed models remains consistent across different test sets. Besides, simply removing misaligned data points from the training set does not lead to a better ST model.
Most NER methods rely on extensive labeled data for model training, which struggles in the low-resource scenarios with limited training data. Existing dominant approaches usually suffer from the challenge that the target domain has different label sets compared with a resource-rich source domain, which can be concluded as class transfer and domain transfer. In this paper, we propose a lightweight tuning paradigm for low-resource NER via pluggable prompting (LightNER). Specifically, we construct the unified learnable verbalizer of entity categories to generate the entity span sequence and entity categories without any label-specific classifiers, thus addressing the class transfer issue. We further propose a pluggable guidance module by incorporating learnable parameters into the self-attention layer as guidance, which can re-modulate the attention and adapt pre-trained weights. Note that we only tune those inserted module with the whole parameter of the pre-trained language model fixed, thus, making our approach lightweight and flexible for low-resource scenarios and can better transfer knowledge across domains. Experimental results show that LightNER can obtain comparable performance in the standard supervised setting and outperform strong baselines in low-resource settings.
Existing legal judgment prediction methods usually only consider one single case fact description as input, which may not fully utilize the information in the data such as case relations and frequency. In this paper, we propose a new perspective that introduces some contrastive case relations to construct case triples as input, and a corresponding judgment prediction framework with case triples modeling (CTM). Our CTM can more effectively utilize beneficial information to refine the encoding and decoding processes through three customized modules, including the case triple module, the relational attention module, and the category decoder module. Finally, we conduct extensive experiments on two public datasets to verify the effectiveness of our CTM, including overall evaluation, compatibility analysis, ablation studies, analysis of gain source and visualization of case representations.
Many joint entity relation extraction models setup two separated label spaces for the two sub-tasks (i.e., entity detection and relation classification). We argue that this setting may hinder the information interaction between entities and relations. In this work, we propose to eliminate the different treatment on the two sub-tasks’ label spaces. The input of our model is a table containing all word pairs from a sentence. Entities and relations are represented by squares and rectangles in the table. We apply a unified classifier to predict each cell’s label, which unifies the learning of two sub-tasks. For testing, an effective (yet fast) approximate decoder is proposed for finding squares and rectangles from tables. Experiments on three benchmarks (ACE04, ACE05, SciERC) show that, using only half the number of parameters, our model achieves competitive accuracy with the best extractor, and is faster.
Existing multilingual machine translation approaches mainly focus on English-centric directions, while the non-English directions still lag behind. In this work, we aim to build a many-to-many translation system with an emphasis on the quality of non-English language directions. Our intuition is based on the hypothesis that a universal cross-language representation leads to better multilingual translation performance. To this end, we propose mRASP2, a training method to obtain a single unified multilingual translation model. mRASP2 is empowered by two techniques: a) a contrastive learning scheme to close the gap among representations of different languages, and b) data augmentation on both multiple parallel and monolingual data to further align token representations. For English-centric directions, mRASP2 achieves competitive or even better performance than a strong pre-trained model mBART on tens of WMT benchmarks. For non-English directions, mRASP2 achieves an improvement of average 10+ BLEU compared with the multilingual baseline
Multilingual neural machine translation aims at learning a single translation model for multiple languages. These jointly trained models often suffer from performance degradationon rich-resource language pairs. We attribute this degeneration to parameter interference. In this paper, we propose LaSS to jointly train a single unified multilingual MT model. LaSS learns Language Specific Sub-network (LaSS) for each language pair to counter parameter interference. Comprehensive experiments on IWSLT and WMT datasets with various Transformer architectures show that LaSS obtains gains on 36 language pairs by up to 1.2 BLEU. Besides, LaSS shows its strong generalization performance at easy adaptation to new language pairs and zero-shot translation. LaSS boosts zero-shot translation with an average of 8.3 BLEU on 30 language pairs. Codes and trained models are available at https://github.com/NLP-Playground/LaSS.
Recent work on non-autoregressive neural machine translation (NAT) aims at improving the efficiency by parallel decoding without sacrificing the quality. However, existing NAT methods are either inferior to Transformer or require multiple decoding passes, leading to reduced speedup. We propose the Glancing Language Model (GLM) for single-pass parallel generation models. With GLM, we develop Glancing Transformer (GLAT) for machine translation. With only single-pass parallel decoding, GLAT is able to generate high-quality translation with 8×-15× speedup. Note that GLAT does not modify the network architecture, which is a training method to learn word interdependency. Experiments on multiple WMT language directions show that GLAT outperforms all previous single pass non-autoregressive methods, and is nearly comparable to Transformer, reducing the gap to 0.25-0.9 BLEU points.
Document-level event extraction aims to recognize event information from a whole piece of article. Existing methods are not effective due to two challenges of this task: a) the target event arguments are scattered across sentences; b) the correlation among events in a document is non-trivial to model. In this paper, we propose Heterogeneous Graph-based Interaction Model with a Tracker (GIT) to solve the aforementioned two challenges. For the first challenge, GIT constructs a heterogeneous graph interaction network to capture global interactions among different sentences and entity mentions. For the second, GIT introduces a Tracker module to track the extracted events and hence capture the interdependency among the events. Experiments on a large-scale dataset (Zheng et al, 2019) show GIT outperforms the previous methods by 2.8 F1. Further analysis reveals is effective in extracting multiple correlated events and event arguments that scatter across the document.
Personalization of natural language generation plays a vital role in a large spectrum of tasks, such as explainable recommendation, review summarization and dialog systems. In these tasks, user and item IDs are important identifiers for personalization. Transformer, which is demonstrated with strong language modeling capability, however, is not personalized and fails to make use of the user and item IDs since the ID tokens are not even in the same semantic space as the words. To address this problem, we present a PErsonalized Transformer for Explainable Recommendation (PETER), on which we design a simple and effective learning objective that utilizes the IDs to predict the words in the target explanation, so as to endow the IDs with linguistic meanings and to achieve personalized Transformer. Besides generating explanations, PETER can also make recommendations, which makes it a unified model for the whole recommendation-explanation pipeline. Extensive experiments show that our small unpretrained model outperforms fine-tuned BERT on the generation task, in terms of both effectiveness and efficiency, which highlights the importance and the nice utility of our design.
The choice of token vocabulary affects the performance of machine translation. This paper aims to figure out what is a good vocabulary and whether we can find the optimal vocabulary without trial training. To answer these questions, we first provide an alternative understanding of vocabulary from the perspective of information theory. It motivates us to formulate the quest of vocabularization – finding the best token dictionary with a proper size – as an optimal transport (OT) problem. We propose VOLT, a simple and efficient solution without trial training. Empirical results show that VOLT beats widely-used vocabularies in diverse scenarios, including WMT-14 English-German translation, TED bilingual translation, and TED multilingual translation. For example, VOLT achieves 70% vocabulary size reduction and 0.5 BLEU gain on English-German translation. Also, compared to BPE-search, VOLT reduces the search time from 384 GPU hours to 30 GPU hours on English-German translation. Codes are available at https://github.com/Jingjing-NLP/VOLT.
NeurST is an open-source toolkit for neural speech translation. The toolkit mainly focuses on end-to-end speech translation, which is easy to use, modify, and extend to advanced speech translation research and products. NeurST aims at facilitating the speech translation research for NLP researchers and building reliable benchmarks for this field. It provides step-by-step recipes for feature extraction, data preprocessing, distributed training, and evaluation. In this paper, we will introduce the framework design of NeurST and show experimental results for different benchmark datasets, which can be regarded as reliable baselines for future research. The toolkit is publicly available at https://github.com/bytedance/neurst and we will continuously update the performance of with other counterparts and studies at https://st-benchmark.github.io/.
This tutorial provides a comprehensive guide to make the most of pre-training for neural machine translation. Firstly, we will briefly introduce the background of NMT, pre-training methodology, and point out the main challenges when applying pre-training for NMT. Then we will focus on analysing the role of pre-training in enhancing the performance of NMT, how to design a better pre-training model for executing specific NMT tasks and how to better integrate the pre-trained model into NMT system. In each part, we will provide examples, discuss training techniques and analyse what is transferred when applying pre-training.
Recent studies have revealed a security threat to natural language processing (NLP) models, called the Backdoor Attack. Victim models can maintain competitive performance on clean samples while behaving abnormally on samples with a specific trigger word inserted. Previous backdoor attacking methods usually assume that attackers have a certain degree of data knowledge, either the dataset which users would use or proxy datasets for a similar task, for implementing the data poisoning procedure. However, in this paper, we find that it is possible to hack the model in a data-free way by modifying one single word embedding vector, with almost no accuracy sacrificed on clean samples. Experimental results on sentiment analysis and sentence-pair classification tasks show that our method is more efficient and stealthier. We hope this work can raise the awareness of such a critical security risk hidden in the embedding layers of NLP models. Our code is available at https://github.com/lancopku/Embedding-Poisoning.
In this paper, we tackle the task of Definition Generation (DG) in Chinese, which aims at automatically generating a definition for a word. Most existing methods take the source word as an indecomposable semantic unit. However, in parataxis languages like Chinese, word meanings can be composed using the word formation process, where a word (“桃花”, peach-blossom) is formed by formation components (“桃”, peach; “花”, flower) using a formation rule (Modifier-Head). Inspired by this process, we propose to enhance DG with word formation features. We build a formation-informed dataset, and propose a model DeFT, which Decomposes words into formation features, dynamically Fuses different features through a gating mechanism, and generaTes word definitions. Experimental results show that our method is both effective and robust.
There are common semantics shared across text and images. Given a sentence in a source language, whether depicting the visual scene helps translation into a target language? Existing multimodal neural machine translation methods (MNMT) require triplets of bilingual sentence - image for training and tuples of source sentence - image for inference. In this paper, we propose ImagiT, a novel machine translation method via visual imagination. ImagiT first learns to generate visual representation from the source sentence, and then utilizes both source sentence and the “imagined representation” to produce a target translation. Unlike previous methods, it only needs the source sentence at the inference time. Experiments demonstrate that ImagiT benefits from visual imagination and significantly outperforms the text-only neural machine translation baselines. Further analysis reveals that the imagination process in ImagiT helps fill in missing information when performing the degradation strategy.
We propose to improve unsupervised neural machine translation with cross-lingual supervision (), which utilizes supervision signals from high resource language pairs to improve the translation of zero-source languages. Specifically, for training En-Ro system without parallel corpus, we can leverage the corpus from En-Fr and En-De to collectively train the translation from one language into many languages under one model. % is based on multilingual models which require no changes to the standard unsupervised NMT. Simple and effective, significantly improves the translation quality with a big margin in the benchmark unsupervised translation tasks, and even achieves comparable performance to supervised NMT. In particular, on WMT’14 -tasks achieves 37.6 and 35.18 BLEU score, which is very close to the large scale supervised setting and on WMT’16 -tasks achieves 35.09 BLEU score which is even better than the supervised Transformer baseline.
Automatic translation of dialogue texts is a much needed demand in many real life scenarios. However, the currently existing neural machine translation delivers unsatisfying results. In this paper, we conduct a deep analysis of a dialogue corpus and summarize three major issues on dialogue translation, including pronoun dropping (), punctuation dropping (), and typos (). In response to these challenges, we propose a joint learning method to identify omission and typo, and utilize context to translate dialogue utterances. To properly evaluate the performance, we propose a manually annotated dataset with 1,931 Chinese-English parallel utterances from 300 dialogues as a benchmark testbed for dialogue translation. Our experiments show that the proposed method improves translation quality by 3.2 BLEU over the baselines. It also elevates the recovery rate of omitted pronouns from 26.09% to 47.16%. We will publish the code and dataset publicly at https://xxx.xx.
Transformer and its variants have achieved great success in natural language processing. Since Transformer models are huge in size, serving these models is a challenge for real industrial applications. In this paper, we propose , a highly efficient inference library for models in the Transformer family. includes a series of GPU optimization techniques to both streamline the computation of Transformer layers and reduce memory footprint. supports models trained using PyTorch and Tensorflow. Experimental results on standard machine translation benchmarks show that achieves up to 14x speedup compared with TensorFlow and 1.4x speedup compared with , a concurrent CUDA implementation. The code will be released publicly after the review.
This paper describes the systems submitted to IWSLT 2021 by the Volctrans team. We participate in the offline speech translation and text-to-text simultaneous translation tracks. For offline speech translation, our best end-to-end model achieves 7.9 BLEU improvements over the benchmark on the MuST-C test set and is even approaching the results of a strong cascade solution. For text-to-text simultaneous translation, we explore the best practice to optimize the wait-k model. As a result, our final submitted systems exceed the benchmark at around 7 BLEU on the same latency regime. We release our code and model to facilitate both future research works and industrial applications.
Current state-of-the-art systems for joint entity relation extraction (Luan et al., 2019; Wad-den et al., 2019) usually adopt the multi-task learning framework. However, annotations for these additional tasks such as coreference resolution and event extraction are always equally hard (or even harder) to obtain. In this work, we propose a pre-training method ENPAR to improve the joint extraction performance. ENPAR requires only the additional entity annotations that are much easier to collect. Unlike most existing works that only consider incorporating entity information into the sentence encoder, we further utilize the entity pair information. Specifically, we devise four novel objectives,i.e., masked entity typing, masked entity prediction, adversarial context discrimination, and permutation prediction, to pre-train an entity encoder and an entity pair encoder. Comprehensive experiments show that the proposed pre-training method achieves significant improvement over BERT on ACE05, SciERC, and NYT, and outperforms current state-of-the-art on ACE05.
This paper describes the Volctrans’ submission to the WMT21 news translation shared task for German->English translation. We build a parallel (i.e., non-autoregressive) translation system using the Glancing Transformer, which enables fast and accurate parallel decoding in contrast to the currently prevailing autoregressive models. To the best of our knowledge, this is the first parallel translation system that can be scaled to such a practical scenario like WMT competition. More importantly, our parallel translation system achieves the best BLEU score (35.0) on German->English translation task, outperforming all strong autoregressive counterparts.
Dynamic early exiting aims to accelerate the inference of pre-trained language models (PLMs) by emitting predictions in internal layers without passing through the entire model. In this paper, we empirically analyze the working mechanism of dynamic early exiting and find that it faces a performance bottleneck under high speed-up ratios. On one hand, the PLMs’ representations in shallow layers lack high-level semantic information and thus are not sufficient for accurate predictions. On the other hand, the exiting decisions made by internal classifiers are unreliable, leading to wrongly emitted early predictions. We instead propose a new framework for accelerating the inference of PLMs, CascadeBERT, which dynamically selects proper-sized and complete models in a cascading manner, providing comprehensive representations for predictions. We further devise a difficulty-aware objective, encouraging the model to output the class probability that reflects the real difficulty of each instance for a more reliable cascading mechanism. Experimental results show that CascadeBERT can achieve an overall 15% improvement under 4x speed-up compared with existing dynamic early exiting methods on six classification tasks, yielding more calibrated and accurate predictions.
In parataxis languages like Chinese, word meanings are constructed using specific word-formations, which can help to disambiguate word senses. However, such knowledge is rarely explored in previous word sense disambiguation (WSD) methods. In this paper, we propose to leverage word-formation knowledge to enhance Chinese WSD. We first construct a large-scale Chinese lexical sample WSD dataset with word-formations. Then, we propose a model FormBERT to explicitly incorporate word-formations into sense disambiguation. To further enhance generalizability, we design a word-formation predictor module in case word-formation annotations are unavailable. Experimental results show that our method brings substantial performance improvement over strong baselines.
Can pre-trained BERT for one language and GPT for another be glued together to translate texts? Self-supervised training using only monolingual data has led to the success of pre-trained (masked) language models in many NLP tasks. However, directly connecting BERT as an encoder and GPT as a decoder can be challenging in machine translation, for GPT-like models lack a cross-attention component that is needed in seq2seq decoders. In this paper, we propose Graformer to graft separately pre-trained (masked) language models for machine translation. With monolingual data for pre-training and parallel data for grafting training, we maximally take advantage of the usage of both types of data. Experiments on 60 directions show that our method achieves average improvements of 5.8 BLEU in x2en and 2.9 BLEU in en2x directions comparing with the multilingual Transformer of the same size.
Developing a unified multilingual model has been a long pursuing goal for machine translation. However, existing approaches suffer from performance degradation - a single multilingual model is inferior to separately trained bilingual ones on rich-resource languages. We conjecture that such a phenomenon is due to interference brought by joint training with multiple languages. To accommodate the issue, we propose CIAT, an adapted Transformer model with a small parameter overhead for multilingual machine translation. We evaluate CIAT on multiple benchmark datasets, including IWSLT, OPUS-100, and WMT. Experiments show that the CIAT consistently outperforms strong multilingual baselines on 64 of total 66 language directions, 42 of which have above 0.5 BLEU improvement.
This paper presents Self-correcting Encoding (Secoco), a framework that effectively deals with noisy input for robust neural machine translation by introducing self-correcting predictors. Different from previous robust approaches, Secoco enables NMT to explicitly correct noisy inputs and delete specific errors simultaneously with the translation decoding process. Secoco is able to achieve significant improvements over strong baselines on two real-world test sets and a benchmark WMT dataset with good interpretability. We will make our code and dataset publicly available soon.
Knowledge distillation (KD) has been proved effective for compressing large-scale pre-trained language models. However, existing methods conduct KD statically, e.g., the student model aligns its output distribution to that of a selected teacher model on the pre-defined training dataset. In this paper, we explore whether a dynamic knowledge distillation that empowers the student to adjust the learning procedure according to its competency, regarding the student performance and learning efficiency. We explore the dynamical adjustments on three aspects: teacher model adoption, data selection, and KD objective adaptation. Experimental results show that (1) proper selection of teacher model can boost the performance of student model; (2) conducting KD with 10% informative instances achieves comparable performance while greatly accelerates the training; (3) the student performance can be boosted by adjusting the supervision contribution of different alignment objective. We find dynamic knowledge distillation is promising and provide discussions on potential future directions towards more efficient KD methods.
Document-level relation extraction aims to identify relations between entities in a whole document. Prior efforts to capture long-range dependencies have relied heavily on implicitly powerful representations learned through (graph) neural networks, which makes the model less transparent. To tackle this challenge, in this paper, we propose LogiRE, a novel probabilistic model for document-level relation extraction by learning logic rules. LogiRE treats logic rules as latent variables and consists of two modules: a rule generator and a relation extractor. The rule generator is to generate logic rules potentially contributing to final predictions, and the relation extractor outputs final predictions based on the generated logic rules. Those two modules can be efficiently optimized with the expectation-maximization (EM) algorithm. By introducing logic rules into neural networks, LogiRE can explicitly capture long-range dependencies as well as enjoy better interpretation. Empirical results show that significantly outperforms several strong baselines in terms of relation performance and logical consistency. Our code is available at https://github.com/rudongyu/LogiRE.
Neural abstractive summarization systems have gained significant progress in recent years. However, abstractive summarization often produce inconsisitent statements or false facts. How to automatically generate highly abstract yet factually correct summaries? In this paper, we proposed an efficient weak-supervised adversarial data augmentation approach to form the factual consistency dataset. Based on the artificial dataset, we train an evaluation model that can not only make accurate and robust factual consistency discrimination but is also capable of making interpretable factual errors tracing by backpropagated gradient distribution on token embeddings. Experiments and analysis conduct on public annotated summarization and factual consistency datasets demonstrate our approach effective and reasonable.
How to effectively adapt neural machine translation (NMT) models according to emerging cases without retraining? Despite the great success of neural machine translation, updating the deployed models online remains a challenge. Existing non-parametric approaches that retrieve similar examples from a database to guide the translation process are promising but are prone to overfit the retrieved examples. However, non-parametric methods are prone to overfit the retrieved examples. In this work, we propose to learn Kernel-Smoothed Translation with Example Retrieval (KSTER), an effective approach to adapt neural machine translation models online. Experiments on domain adaptation and multi-domain machine translation datasets show that even without expensive retraining, KSTER is able to achieve improvement of 1.1 to 1.5 BLEU scores over the best existing online adaptation methods. The code and trained models are released at https://github.com/jiangqn/KSTER.
Data augmentation aims to enrich training samples for alleviating the overfitting issue in low-resource or class-imbalanced situations. Traditional methods first devise task-specific operations such as Synonym Substitute, then preset the corresponding parameters such as the substitution rate artificially, which require a lot of prior knowledge and are prone to fall into the sub-optimum. Besides, the number of editing operations is limited in the previous methods, which decreases the diversity of the augmented data and thus restricts the performance gain. To overcome the above limitations, we propose a framework named Text AutoAugment (TAA) to establish a compositional and learnable paradigm for data augmentation. We regard a combination of various operations as an augmentation policy and utilize an efficient Bayesian Optimization algorithm to automatically search for the best policy, which substantially improves the generalization capability of models. Experiments on six benchmark datasets show that TAA boosts classification accuracy in low-resource and class-imbalanced regimes by an average of 8.8% and 9.7%, respectively, outperforming strong baselines.
Our system participates in two shared tasks, CL-SciSumm 2020 and LongSumm 2020. In the CL-SciSumm shared task, based on our previous work, we apply more machine learning methods on position features and content features for facet classification in Task1B. And GCN is introduced in Task2 to perform extractive summarization. In the LongSumm shared task, we integrate both the extractive and abstractive summarization ways. Three methods were tested which are T5 Fine-tuning, DPPs Sampling, and GRU-GCN/GAT.
This paper describes our submission systems for VolcTrans for WMT20 shared news translation task. We participated in 8 translation directions. Our basic systems are based on Transformer (CITATION), into which we also employed new architectures (bigger or deeper Transformers, dynamic convolution). The final systems include text pre-process, subword(a.k.a. BPE(CITATION)), baseline model training, iterative back-translation, model ensemble, knowledge distillation and multilingual pre-training.
In this paper, we describe our submissions to the WMT20 shared task on parallel corpus filtering and alignment for low-resource conditions. The task requires the participants to align potential parallel sentence pairs out of the given document pairs, and score them so that low-quality pairs can be filtered. Our system, Volctrans, is made of two modules, i.e., a mining module and a scoring module. Based on the word alignment model, the mining mod- ule adopts an iterative mining strategy to extract latent parallel sentences. In the scoring module, an XLM-based scorer provides scores, followed by reranking mechanisms and ensemble. Our submissions outperform the baseline by 3.x/2.x and 2.x/2.x for km-en and ps-en on From Scratch/Fine-Tune conditions.
It has been a common approach to pre-train a language model on a large corpus and fine-tune it on task-specific data. In practice, we observe that fine-tuning a pre-trained model on a small dataset may lead to over- and/or under-estimate problem. In this paper, we propose MC-Tailor, a novel method to alleviate the above issue in text generation tasks by truncating and transferring the probability mass from over-estimated regions to under-estimated ones. Experiments on a variety of text generation datasets show that MC-Tailor consistently and significantly outperforms the fine-tuning approach.
This paper proposes the building of Xiaomingbot, an intelligent, multilingual and multimodal software robot equipped with four inte- gral capabilities: news generation, news translation, news reading and avatar animation. Its system summarizes Chinese news that it automatically generates from data tables. Next, it translates the summary or the full article into multiple languages, and reads the multi- lingual rendition through synthesized speech. Notably, Xiaomingbot utilizes a voice cloning technology to synthesize the speech trained from a real person’s voice data in one input language. The proposed system enjoys several merits: it has an animated avatar, and is able to generate and read multilingual news. Since it was put into practice, Xiaomingbot has written over 600,000 articles, and gained over 150,000 followers on social media platforms.
We participate in the FNS-Summarisation 2020 shared task to be held at FNP 2020 workshop at COLING 2020. Based on Determinantal Point Processes (DPPs), we build an extractive automatic financial summarisation system for the specific task. In this system, we first analyze the long report data to select the important narrative parts and generate an intermediate document. Next, we build the kernel Matrix L for the intermediate document, which represents the quality of its sentences. On the basis of L, we then can use the DPPs sampling algorithm to choose those sentences with high quality and diversity as the final summary sentences.
Generating natural language under complex constraints is a principled formulation towards controllable text generation. We present a framework to allow specification of combinatorial constraints for sentence generation. We propose TSMC, an efficient method to generate high likelihood sentences with respect to a pre-trained language model while satisfying the constraints. Our approach is highly flexible, requires no task-specific train- ing, and leverages efficient constraint satisfaction solving techniques. To better handle the combinatorial constraints, a tree search algorithm is embedded into the proposal process of the Markov Chain Monte Carlo (MCMC) to explore candidates that satisfy more constraints. Compared to existing MCMC approaches, our sampling approach has a better mixing performance. Experiments show that TSMC achieves consistent and significant improvement on multiple language generation tasks.
Active learning for sentence understanding aims at discovering informative unlabeled data for annotation and therefore reducing the demand for labeled data. We argue that the typical uncertainty sampling method for active learning is time-consuming and can hardly work in real-time, which may lead to ineffective sample selection. We propose adversarial uncertainty sampling in discrete space (AUSDS) to retrieve informative unlabeled samples more efficiently. AUSDS maps sentences into latent space generated by the popular pre-trained language models, and discover informative unlabeled text samples for annotation via adversarial attack. The proposed approach is extremely efficient compared with traditional uncertainty sampling with more than 10x speedup. Experimental results on five datasets show that AUSDS outperforms strong baselines on effectiveness.
Document-level relation extraction aims to extract relations among entities within a document. Different from sentence-level relation extraction, it requires reasoning over multiple sentences across paragraphs. In this paper, we propose Graph Aggregation-and-Inference Network (GAIN), a method to recognize such relations for long paragraphs. GAIN constructs two graphs, a heterogeneous mention-level graph (MG) and an entity-level graph (EG). The former captures complex interaction among different mentions and the latter aggregates mentions underlying for the same entities. Based on the graphs we propose a novel path reasoning mechanism to infer relations between entities. Experiments on the public dataset, DocRED, show GAIN achieves a significant performance improvement (2.85 on F1) over the previous state-of-the-art. Our code is available at https://github.com/PKUnlp-icler/GAIN.
We investigate the following question for machine translation (MT): can we develop a single universal MT model to serve as the common seed and obtain derivative and improved models on arbitrary language pairs? We propose mRASP, an approach to pre-train a universal multilingual neural machine translation model. Our key idea in mRASP is its novel technique of random aligned substitution, which brings words and phrases with similar meanings across multiple languages closer in the representation space. We pre-train a mRASP model on 32 language pairs jointly with only public datasets. The model is then fine-tuned on downstream language pairs to obtain specialized MT models. We carry out extensive experiments on 42 translation directions across a diverse settings, including low, medium, rich resource, and as well as transferring to exotic language pairs. Experimental results demonstrate that mRASP achieves significant performance improvement compared to directly training on those target pairs. It is the first time to verify that multiple lowresource language pairs can be utilized to improve rich resource MT. Surprisingly, mRASP is even able to improve the translation quality on exotic languages that never occur in the pretraining corpus. Code, data, and pre-trained models are available at https://github.com/linzehui/mRASP.
Pre-trained contextual representations like BERT have achieved great success in natural language processing. However, the sentence embeddings from the pre-trained language models without fine-tuning have been found to poorly capture semantic meaning of sentences. In this paper, we argue that the semantic information in the BERT embeddings is not fully exploited. We first reveal the theoretical connection between the masked language model pre-training objective and the semantic similarity task theoretically, and then analyze the BERT sentence embeddings empirically. We find that BERT always induces a non-smooth anisotropic semantic space of sentences, which harms its performance of semantic similarity. To address this issue, we propose to transform the anisotropic sentence embedding distribution to a smooth and isotropic Gaussian distribution through normalizing flows that are learned with an unsupervised objective. Experimental results show that our proposed BERT-flow method obtains significant performance gains over the state-of-the-art sentence embeddings on a variety of semantic textual similarity tasks. The code is available at https://github.com/bohanli/BERT-flow.
Automatic topic-to-essay generation is a challenging task since it requires generating novel, diverse, and topic-consistent paragraph-level text with a set of topics as input. Previous work tends to perform essay generation based solely on the given topics while ignoring massive commonsense knowledge. However, this commonsense knowledge provides additional background information, which can help to generate essays that are more novel and diverse. Towards filling this gap, we propose to integrate commonsense from the external knowledge base into the generator through dynamic memory mechanism. Besides, the adversarial training based on a multi-label discriminator is employed to further improve topic-consistency. We also develop a series of automatic evaluation metrics to comprehensively assess the quality of the generated essay. Experiments show that with external commonsense knowledge and adversarial training, the generated essays are more novel, diverse, and topic-consistent than existing methods in terms of both automatic and human evaluation.
Automatic commenting of online articles can provide additional opinions and facts to the reader, which improves user experience and engagement on social media platforms. Previous work focuses on automatic commenting based solely on textual content. However, in real-scenarios, online articles usually contain multiple modal contents. For instance, graphic news contains plenty of images in addition to text. Contents other than text are also vital because they are not only more attractive to the reader but also may provide critical information. To remedy this, we propose a new task: cross-model automatic commenting (CMAC), which aims to make comments by integrating multiple modal contents. We construct a large-scale dataset for this task and explore several representative methods. Going a step further, an effective co-attention model is presented to capture the dependency between textual and visual information. Evaluation results show that our proposed model can achieve better performance than competitive baselines.
Efficiently building an adversarial attacker for natural language processing (NLP) tasks is a real challenge. Firstly, as the sentence space is discrete, it is difficult to make small perturbations along the direction of gradients. Secondly, the fluency of the generated examples cannot be guaranteed. In this paper, we propose MHA, which addresses both problems by performing Metropolis-Hastings sampling, whose proposal is designed with the guidance of gradients. Experiments on IMDB and SNLI show that our proposed MHAoutperforms the baseline model on attacking capability. Adversarial training with MHA also leads to better robustness and performance.
Variational auto-encoders (VAEs) are widely used in natural language generation due to the regularization of the latent space. However, generating sentences from the continuous latent space does not explicitly model the syntactic information. In this paper, we propose to generate sentences from disentangled syntactic and semantic spaces. Our proposed method explicitly models syntactic information in the VAE’s latent space by using the linearized tree sequence, leading to better performance of language generation. Additionally, the advantage of sampling in the disentangled syntactic and semantic latent spaces enables us to perform novel applications, such as the unsupervised paraphrase generation and syntax transfer generation. Experimental results show that our proposed model achieves similar or better performance in various tasks, compared with state-of-the-art related work.
Text-based question answering (TBQA) has been studied extensively in recent years. Most existing approaches focus on finding the answer to a question within a single paragraph. However, many difficult questions require multiple supporting evidence from scattered text among two or more documents. In this paper, we propose Dynamically Fused Graph Network (DFGN), a novel method to answer those questions requiring multiple scattered evidence and reasoning over them. Inspired by human’s step-by-step reasoning behavior, DFGN includes a dynamic fusion layer that starts from the entities mentioned in the given query, explores along the entity graph dynamically built from the text, and gradually finds relevant supporting entities from the given documents. We evaluate DFGN on HotpotQA, a public TBQA dataset requiring multi-hop reasoning. DFGN achieves competitive results on the public board. Furthermore, our analysis shows DFGN produces interpretable reasoning chains.
Comments on social media are very diverse, in terms of content, style and vocabulary, which make generating comments much more challenging than other existing natural language generation (NLG) tasks. Besides, since different user has different expression habits, it is necessary to take the user’s profile into consideration when generating comments. In this paper, we introduce the task of automatic generation of personalized comment (AGPC) for social media. Based on tens of thousands of users’ real comments and corresponding user profiles on weibo, we propose Personalized Comment Generation Network (PCGN) for AGPC. The model utilizes user feature embedding with a gated memory and attends to user description to model personality of users. In addition, external user representation is taken into consideration during the decoding to enhance the comments generation. Experimental results show that our model can generate natural, human-like and personalized comments.
Various Seq2Seq learning models designed for machine translation were applied for abstractive summarization task recently. Despite these models provide high ROUGE scores, they are limited to generate comprehensive summaries with a high level of abstraction due to its degenerated attention distribution. We introduce Diverse Convolutional Seq2Seq Model(DivCNN Seq2Seq) using Determinantal Point Processes methods(Micro DPPs and Macro DPPs) to produce attention distribution considering both quality and diversity. Without breaking the end to end architecture, DivCNN Seq2Seq achieves a higher level of comprehensiveness compared to vanilla models and strong baselines. All the reproducible codes and datasets are available online.
In this study, we first investigate a novel capsule network with dynamic routing for linear time Neural Machine Translation (NMT), referred as CapsNMT. CapsNMT uses an aggregation mechanism to map the source sentence into a matrix with pre-determined size, and then applys a deep LSTM network to decode the target sequence from the source representation. Unlike the previous work (CITATION) to store the source sentence with a passive and bottom-up way, the dynamic routing policy encodes the source sentence with an iterative process to decide the credit attribution between nodes from lower and higher layers. CapsNMT has two core properties: it runs in time that is linear in the length of the sequences and provides a more flexible way to aggregate the part-whole information of the source sentence. On WMT14 English-German task and a larger WMT14 English-French task, CapsNMT achieves comparable results with the Transformer system. To the best of our knowledge, this is the first work that capsule networks have been empirically investigated for sequence to sequence problems.
In this paper, we focus on the task of generating a pun sentence given a pair of word senses. A major challenge for pun generation is the lack of large-scale pun corpus to guide supervised learning. To remedy this, we propose an adversarial generative network for pun generation (Pun-GAN). It consists of a generator to produce pun sentences, and a discriminator to distinguish between the generated pun sentences and the real sentences with specific word senses. The output of the discriminator is then used as a reward to train the generator via reinforcement learning, encouraging it to produce pun sentences which can support two word senses simultaneously. Experiments show that the proposed Pun-GAN can generate sentences that are more ambiguous and diverse in both automatic and human evaluation.
This tutorial provides a comprehensive guide to the process of discreteness in neural NLP.As a gentle start, we will briefly introduce the background of deep learning based NLP, where we point out the ubiquitous discreteness of natural language and its challenges in neural information processing. Particularly, we will focus on how such discreteness plays a role in the input space, the latent space, and the output space of a neural network. In each part, we will provide examples, discuss machine learning techniques, as well as demonstrate NLP applications.
Text attribute transfer is modifying certain linguistic attributes (e.g. sentiment, style, author-ship, etc.) of a sentence and transforming them from one type to another. In this paper, we aim to analyze and interpret what is changed during the transfer process. We start from the observation that in many existing models and datasets, certain words within a sentence play important roles in determining the sentence attribute class. These words are referred as the Pivot Words. Based on these pivot words, we propose a lexical analysis framework, the Pivot Analysis, to quantitatively analyze the effects of these words in text attribute classification and transfer. We apply this framework to existing datasets and models and show that: (1) the pivot words are strong features for the classification of sentence attributes; (2) to change the attribute of a sentence, many datasets only requires to change certain pivot words; (3) consequently, many transfer models only perform the lexical-level modification,while leaving higher-level sentence structures unchanged. Our work provides an in-depth understanding of linguistic attribute transfer and further identifies the future requirements and challenges of this task
MultiLing 2019 Headline Generation Task on Wikipedia Corpus raised a critical and practical problem: multilingual task on low resource corpus. In this paper we proposed QDAS extractive summarization model enhanced by sentence2vec and try to apply transfer learning based on large multilingual pre-trained language model for Wikipedia Headline Generation task. We treat it as sequence labeling task and develop two schemes to handle with it. Experimental results have shown that large pre-trained model can effectively utilize learned knowledge to extract certain phrase using low resource supervised data.
Co-training is a popular semi-supervised learning framework to utilize a large amount of unlabeled data in addition to a small labeled set. Co-training methods exploit predicted labels on the unlabeled data and select samples based on prediction confidence to augment the training. However, the selection of samples in existing co-training methods is based on a predetermined policy, which ignores the sampling bias between the unlabeled and the labeled subsets, and fails to explore the data space. In this paper, we propose a novel method, Reinforced Co-Training, to select high-quality unlabeled samples to better co-train on. More specifically, our approach uses Q-learning to learn a data selection policy with a small labeled dataset, and then exploits this policy to train the co-training classifiers automatically. Experimental results on clickbait detection and generic text classification tasks demonstrate that our proposed method can obtain more accurate text classification results.
Neural networks with tree-based sentence encoders have shown better results on many downstream tasks. Most of existing tree-based encoders adopt syntactic parsing trees as the explicit structure prior. To study the effectiveness of different tree structures, we replace the parsing trees with trivial trees (i.e., binary balanced tree, left-branching tree and right-branching tree) in the encoders. Though trivial trees contain no syntactic information, those encoders get competitive or even better results on all of the ten downstream tasks we investigated. This surprising result indicates that explicit syntax guidance may not be the main contributor to the superior performances of tree-based neural sentence modeling. Further analysis show that tree modeling gives better results when crucial words are closer to the final representation. Additional experiments give more clues on how to design an effective tree-based encoder. Our code is open-source and available at https://github.com/ExplorerFreda/TreeEnc.
Multiple grammatical and semantic features are adopted in content linking and argument/sentiment labeling for online forums in this paper. There are mainly two different methods for content linking. First, we utilize the deep feature obtained from Word Embedding Model in deep learning and compute sentence similarity. Second, we use multiple traditional features to locate candidate linking sentences, and then adopt a voting method to obtain the final result. LDA topic modeling is used to mine latent semantic feature and K-means clustering is implemented for argument labeling, while features from sentiment dictionaries and rule-based sentiment analysis are integrated for sentiment labeling. Experimental results have shown that our methods are valid.
Assigning a standard ICD-9-CM code to disease symptoms in medical texts is an important task in the medical domain. Automating this process could greatly reduce the costs. However, the effectiveness of an automatic ICD-9-CM code classifier faces a serious problem, which can be triggered by unbalanced training data. Frequent diseases often have more training data, which helps its classification to perform better than that of an infrequent disease. However, a disease’s frequency does not necessarily reflect its importance. To resolve this training data shortage problem, we propose to strategically draw data from PubMed to enrich the training data when there is such need. We validate our method on the CMC dataset, and the evaluation results indicate that our method can significantly improve the code assignment classifiers’ performance at the macro-averaging level.