Li Dong


2024

pdf bib
EDDA: An Encoder-Decoder Data Augmentation Framework for Zero-Shot Stance Detection
Daijun Ding | Li Dong | Zhichao Huang | Guangning Xu | Xu Huang | Bo Liu | Liwen Jing | Bowen Zhang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Stance detection aims to determine the attitude expressed in text towards a given target. Zero-shot stance detection (ZSSD) has emerged to classify stances towards unseen targets during inference. Recent data augmentation techniques for ZSSD increase transferable knowledge between targets through text or target augmentation. However, these methods exhibit limitations. Target augmentation lacks logical connections between generated targets and source text, while text augmentation relies solely on training data, resulting in insufficient generalization. To address these issues, we propose an encoder-decoder data augmentation (EDDA) framework. The encoder leverages large language models and chain-of-thought prompting to summarize texts into target-specific if-then rationales, establishing logical relationships. The decoder generates new samples based on these expressions using a semantic correlation word replacement strategy to increase syntactic diversity. We also analyze the generated expressions to develop a rationale-enhanced network that fully utilizes the augmented data. Experiments on benchmark datasets demonstrate our approach substantially improves over state-of-the-art ZSSD techniques. The proposed EDDA framework increases semantic relevance and syntactic variety in augmented texts while enabling interpretable rationale-based learning.

pdf bib
Language Models as Inductive Reasoners
Zonglin Yang | Li Dong | Xinya Du | Hao Cheng | Erik Cambria | Xiaodong Liu | Jianfeng Gao | Furu Wei
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Inductive reasoning is a core component of human intelligence. In the past research of inductive reasoning within computer science, formal language is used as representations of knowledge (facts and rules, more specifically). However, formal language can cause systematic problems for inductive reasoning such as disability of handling raw input such as natural language, sensitiveness to mislabeled data, and incapacity to handle ambiguous input. To this end, we propose a new paradigm (task) for inductive reasoning, which is to induce natural language rules from natural language facts, and create a dataset termed DEER containing 1.2k rule-fact pairs for the task, where rules and facts are written in natural language. New automatic metrics are also proposed and analysed for the evaluation of this task. With DEER, we investigate a modern approach for inductive reasoning where we use natural language as representation for knowledge instead of formal language and use pretrained language models as ”reasoners”. Moreover, we provide the first and comprehensive analysis of how well pretrained language models can induce natural language rules from natural language facts. We also propose a new framework drawing insights from philosophy literature for this task, which we show in the experiment section that surpasses baselines in both automatic and human evaluations. We discuss about our future perspectives for inductive reasoning in Section 7. Dataset and code are available at https://github.com/ZonglinY/Inductive_Reasoning.

2023

pdf bib
Pre-Training to Learn in Context
Yuxian Gu | Li Dong | Furu Wei | Minlie Huang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In-context learning, where pre-trained language models learn to perform tasks from task examples and instructions in their contexts, has attracted much attention in the NLP community. However, the ability of in-context learning is not fully exploited because language models are not explicitly trained to learn in context. To this end, we propose PICL (Pre-training for In-Context Learning), a framework to enhance the language models’ in-context learning ability by pre-training the model on a large collection of “intrinsic tasks” in the general plain-text corpus using the simple language modeling objective. PICL encourages the model to infer and perform tasks by conditioning on the contexts while maintaining task generalization of pre-trained models. We evaluate the in-context learning performance of the model trained with PICL on seven widely-used text classification datasets and the Super-NaturalInstrctions benchmark, which contains 100+ NLP tasks formulated to text generation. Our experiments show that PICL is more effective and task-generalizable than a range of baselines, outperforming larger language models with nearly 4x parameters. The code is publicly available at https://github.com/thu-coai/PICL.

pdf bib
GanLM: Encoder-Decoder Pre-training with an Auxiliary Discriminator
Jian Yang | Shuming Ma | Li Dong | Shaohan Huang | Haoyang Huang | Yuwei Yin | Dongdong Zhang | Liqun Yang | Furu Wei | Zhoujun Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Pre-trained models have achieved remarkable success in natural language processing (NLP). However, existing pre-training methods underutilize the benefits of language understanding for generation. Inspired by the idea of Generative Adversarial Networks (GANs), we propose a GAN-style model for encoder-decoder pre-training by introducing an auxiliary discriminator, unifying the ability of language understanding and generation in a single model. Our model, named as GanLM, is trained with two pre-training objectives: replaced token detection and replaced token denoising. Specifically, given masked source sentences, the generator outputs the target distribution and the discriminator predicts whether the target sampled tokens from distribution are incorrect. The target sentence is replaced with misclassified tokens to construct noisy previous context, which is used to generate the gold sentence. In general, both tasks improve the ability of language understanding and generation by selectively using the denoising data. Extensive experiments in language generation benchmarks show that GanLM with the powerful language understanding capability outperforms various strong pre-trained language models (PLMs) and achieves state-of-the-art performance.

pdf bib
A Length-Extrapolatable Transformer
Yutao Sun | Li Dong | Barun Patra | Shuming Ma | Shaohan Huang | Alon Benhaim | Vishrav Chaudhary | Xia Song | Furu Wei
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Position modeling plays a critical role in Transformers. In this paper, we focus on length extrapolation, i.e., training on short texts while evaluating longer sequences. We define attention resolution as an indicator of extrapolation. Then we propose two designs to improve the above metric of Transformers. Specifically, we introduce a relative position embedding to explicitly maximize attention resolution. Moreover, we use blockwise causal attention during inference for better resolution. We evaluate different Transformer variants with language modeling. Experimental results show that our model achieves strong performance in both interpolation and extrapolation settings. The code will be available at https://aka.ms/LeX-Transformer.

pdf bib
Beyond English-Centric Bitexts for Better Multilingual Language Representation Learning
Barun Patra | Saksham Singhal | Shaohan Huang | Zewen Chi | Li Dong | Furu Wei | Vishrav Chaudhary | Xia Song
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we elaborate upon recipes for building multilingual representation models that are not only competitive with existing state-of-the-art models but are also more parameter efficient, thereby promoting better adoption in resource-constrained scenarios and practical applications. We show that going beyond English-centric bitexts, coupled with a novel sampling strategy aimed at reducing under-utilization of training data, substantially boosts performance across model sizes for both Electra and MLM pre-training objectives. We introduce XY-LENT: X-Y bitext enhanced Language ENcodings using Transformers which not only achieves state-of-the-art performance over 5 cross-lingual tasks within all model size bands, is also competitive across bands. Our XY-LENT XL variant outperforms XLM-R XXL and exhibits competitive performance with mT5 XXL while being 5x and 6x smaller respectively. We then show that our proposed method helps ameliorate the curse of multilinguality, with the XY-LENT XL achieving 99.3% GLUE performance and 98.5% SQuAD 2.0 performance compared to a SoTA English only model in the same size band. We then analyze our models performance on extremely low resource languages and posit that scaling alone may not be sufficient for improving the performance in this scenario

pdf bib
Why Can GPT Learn In-Context? Language Models Secretly Perform Gradient Descent as Meta-Optimizers
Damai Dai | Yutao Sun | Li Dong | Yaru Hao | Shuming Ma | Zhifang Sui | Furu Wei
Findings of the Association for Computational Linguistics: ACL 2023

Large pretrained language models have shown surprising in-context learning (ICL) ability. With a few demonstration input-label pairs, they can predict the label for an unseen input without parameter updates. Despite the great success in performance, its working mechanism still remains an open question. In this paper, we explain language models as meta-optimizers and understand in-context learning as implicit finetuning. Theoretically, we figure out that Transformer attention has a dual form of gradient descent. On top of it, we understand ICL as follows: GPT first produces meta-gradients according to the demonstration examples, and then these meta-gradients are applied to the original GPT to build an ICL model. We comprehensively compare the behaviors of in-context learning and explicit finetuning on real tasks to provide empirical evidence that supports our understanding. Experimental results show that in-context learning behaves similarly to explicit finetuning from multiple perspectives. Inspired by the dual form between Transformer attention and gradient descent, we design a momentum-based attention by analogy with gradient descent with momentum. The improved performance over vanilla attention further supports our understanding from another perspective, and more importantly, shows the potential to utilize our understanding for future model design. The code is available at https://aka.ms/icl.

2022

pdf bib
CLIP Models are Few-Shot Learners: Empirical Studies on VQA and Visual Entailment
Haoyu Song | Li Dong | Weinan Zhang | Ting Liu | Furu Wei
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

CLIP has shown a remarkable zero-shot capability on a wide range of vision tasks. Previously, CLIP is only regarded as a powerful visual encoder. However, after being pre-trained by language supervision from a large amount of image-caption pairs, CLIP itself should also have acquired some few-shot abilities for vision-language tasks. In this work, we empirically show that CLIP can be a strong vision-language few-shot learner by leveraging the power of language. We first evaluate CLIP’s zero-shot performance on a typical visual question answering task and demonstrate a zero-shot cross-modality transfer capability of CLIP on the visual entailment task. Then we propose a parameter-efficient fine-tuning strategy to boost the few-shot performance on the vqa task. We achieve competitive zero/few-shot results on the visual question answering and visual entailment tasks without introducing any additional pre-training procedure.

pdf bib
XLM-E: Cross-lingual Language Model Pre-training via ELECTRA
Zewen Chi | Shaohan Huang | Li Dong | Shuming Ma | Bo Zheng | Saksham Singhal | Payal Bajaj | Xia Song | Xian-Ling Mao | Heyan Huang | Furu Wei
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we introduce ELECTRA-style tasks to cross-lingual language model pre-training. Specifically, we present two pre-training tasks, namely multilingual replaced token detection, and translation replaced token detection. Besides, we pretrain the model, named as XLM-E, on both multilingual and parallel corpora. Our model outperforms the baseline models on various cross-lingual understanding tasks with much less computation cost. Moreover, analysis shows that XLM-E tends to obtain better cross-lingual transferability.

pdf bib
StableMoE: Stable Routing Strategy for Mixture of Experts
Damai Dai | Li Dong | Shuming Ma | Bo Zheng | Zhifang Sui | Baobao Chang | Furu Wei
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The Mixture-of-Experts (MoE) technique can scale up the model size of Transformers with an affordable computational overhead. We point out that existing learning-to-route MoE methods suffer from the routing fluctuation issue, i.e., the target expert of the same input may change along with training, but only one expert will be activated for the input during inference. The routing fluctuation tends to harm sample efficiency because the same input updates different experts but only one is finally used. In this paper, we propose StableMoE with two training stages to address the routing fluctuation problem. In the first training stage, we learn a balanced and cohesive routing strategy and distill it into a lightweight router decoupled from the backbone model. In the second training stage, we utilize the distilled router to determine the token-to-expert assignment and freeze it for a stable routing strategy. We validate our method on language modeling and multilingual machine translation. The results show that StableMoE outperforms existing MoE methods in terms of both convergence speed and performance.

pdf bib
Knowledge Neurons in Pretrained Transformers
Damai Dai | Li Dong | Yaru Hao | Zhifang Sui | Baobao Chang | Furu Wei
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large-scale pretrained language models are surprisingly good at recalling factual knowledge presented in the training corpus. In this paper, we present preliminary studies on how factual knowledge is stored in pretrained Transformers by introducing the concept of knowledge neurons. Specifically, we examine the fill-in-the-blank cloze task for BERT. Given a relational fact, we propose a knowledge attribution method to identify the neurons that express the fact. We find that the activation of such knowledge neurons is positively correlated to the expression of their corresponding facts. In our case studies, we attempt to leverage knowledge neurons to edit (such as update, and erase) specific factual knowledge without fine-tuning. Our results shed light on understanding the storage of knowledge within pretrained Transformers.

pdf bib
Controllable Natural Language Generation with Contrastive Prefixes
Jing Qian | Li Dong | Yelong Shen | Furu Wei | Weizhu Chen
Findings of the Association for Computational Linguistics: ACL 2022

To guide the generation of large pretrained language models (LM), previous work has focused on directly fine-tuning the language model or utilizing an attribute discriminator. In this work, we propose a novel lightweight framework for controllable GPT2 generation, which utilizes a set of small attribute-specific vectors, called prefixes (Li and Liang, 2021), to steer natural language generation. Different from Li and Liang (2021), where each prefix is trained independently, we take the relationship among prefixes into consideration and train multiple prefixes simultaneously. We propose a novel supervised method and also an unsupervised method to train the prefixes for single-aspect control while the combination of these two methods can achieve multi-aspect control. Experimental results on both single-aspect and multi-aspect control show that our methods can guide generation towards the desired attributes while keeping high linguistic quality.

pdf bib
THE-X: Privacy-Preserving Transformer Inference with Homomorphic Encryption
Tianyu Chen | Hangbo Bao | Shaohan Huang | Li Dong | Binxing Jiao | Daxin Jiang | Haoyi Zhou | Jianxin Li | Furu Wei
Findings of the Association for Computational Linguistics: ACL 2022

As more and more pre-trained language models adopt on-cloud deployment, the privacy issues grow quickly, mainly for the exposure of plain-text user data (e.g., search history, medical record, bank account). Privacy-preserving inference of transformer models is on the demand of cloud service users. To protect privacy, it is an attractive choice to compute only with ciphertext in homomorphic encryption (HE). However, enabling pre-trained models inference on ciphertext data is difficult due to the complex computations in transformer blocks, which are not supported by current HE tools yet. In this work, we introduce THE-X, an approximation approach for transformers, which enables privacy-preserving inference of pre-trained models developed by popular frameworks. THE-X proposes a workflow to deal with complex computation in transformer networks, including all the non-polynomial functions like GELU, softmax, and LayerNorm. Experiments reveal our proposed THE-X can enable transformer inference on encrypted data for different downstream tasks, all with negligible performance drop but enjoying the theory-guaranteed privacy-preserving advantage.

pdf bib
CROP: Zero-shot Cross-lingual Named Entity Recognition with Multilingual Labeled Sequence Translation
Jian Yang | Shaohan Huang | Shuming Ma | Yuwei Yin | Li Dong | Dongdong Zhang | Hongcheng Guo | Zhoujun Li | Furu Wei
Findings of the Association for Computational Linguistics: EMNLP 2022

Named entity recognition (NER) suffers from the scarcity of annotated training data, especially for low-resource languages without labeled data. Cross-lingual NER has been proposed to alleviate this issue by transferring knowledge from high-resource languages to low-resource languages via aligned cross-lingual representations or machine translation results. However, the performance of cross-lingual NER methods is severely affected by the unsatisfactory quality of translation or label projection. To address these problems, we propose a Cross-lingual Entity Projection framework (CROP) to enable zero-shot cross-lingual NER with the help of a multilingual labeled sequence translation model. Specifically, the target sequence is first translated into the source language and then tagged by a source NER model. We further adopt a labeled sequence translation model to project the tagged sequence back to the target language and label the target raw sentence. Ultimately, the whole pipeline is integrated into an end-to-end model by the way of self-training. Experimental results on two benchmarks demonstrate that our method substantially outperforms the previous strong baseline by a large margin of +3 7 F1 scores and achieves state-of-the-art performance.

pdf bib
AdaPrompt: Adaptive Model Training for Prompt-based NLP
Yulong Chen | Yang Liu | Li Dong | Shuohang Wang | Chenguang Zhu | Michael Zeng | Yue Zhang
Findings of the Association for Computational Linguistics: EMNLP 2022

Prompt-based learning, with its capability to tackle zero-shot and few-shot NLP tasks, has gained much attention in the community.The main idea is to bridge the gap between NLP downstream tasks and language modeling (LM), by mapping these tasks into natural language prompts, which are then filled by pre-trained language models (PLMs).However, for prompt learning, there are still two salient gaps between NLP tasks and pretraining.First, prompt information is not necessarily sufficiently present during LM pre-training. Second, task-specific data are not necessarily well represented during pre-training. We address these two issues by proposing AdaPrompt, adaptively retrieving external data for continual pretraining of PLMs by making use of both task and prompt characteristics. In addition, we make use of knowledge in Natural Language Inference models for deriving adaptive verbalizers.Experimental results on five NLP benchmarks show that AdaPrompt can improve over standard PLMs in few-shot settings. In addition, in zero-shot settings, our method outperforms standard prompt-based methods by up to 26.35% relative error reduction.

2021

pdf bib
Zero-Shot Cross-Lingual Transfer of Neural Machine Translation with Multilingual Pretrained Encoders
Guanhua Chen | Shuming Ma | Yun Chen | Li Dong | Dongdong Zhang | Jia Pan | Wenping Wang | Furu Wei
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Previous work mainly focuses on improving cross-lingual transfer for NLU tasks with a multilingual pretrained encoder (MPE), or improving the performance on supervised machine translation with BERT. However, it is under-explored that whether the MPE can help to facilitate the cross-lingual transferability of NMT model. In this paper, we focus on a zero-shot cross-lingual transfer task in NMT. In this task, the NMT model is trained with parallel dataset of only one language pair and an off-the-shelf MPE, then it is directly tested on zero-shot language pairs. We propose SixT, a simple yet effective model for this task. SixT leverages the MPE with a two-stage training schedule and gets further improvement with a position disentangled encoder and a capacity-enhanced decoder. Using this method, SixT significantly outperforms mBART, a pretrained multilingual encoder-decoder model explicitly designed for NMT, with an average improvement of 7.1 BLEU on zero-shot any-to-English test sets across 14 source languages. Furthermore, with much less training computation cost and training data, our model achieves better performance on 15 any-to-English test sets than CRISS and m2m-100, two strong multilingual NMT baselines.

pdf bib
mT6: Multilingual Pretrained Text-to-Text Transformer with Translation Pairs
Zewen Chi | Li Dong | Shuming Ma | Shaohan Huang | Saksham Singhal | Xian-Ling Mao | Heyan Huang | Xia Song | Furu Wei
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Multilingual T5 pretrains a sequence-to-sequence model on massive monolingual texts, which has shown promising results on many cross-lingual tasks. In this paper, we improve multilingual text-to-text transfer Transformer with translation pairs (mT6). Specifically, we explore three cross-lingual text-to-text pre-training tasks, namely, machine translation, translation pair span corruption, and translation span corruption. In addition, we propose a partially non-autoregressive objective for text-to-text pre-training. We evaluate the methods on seven multilingual benchmark datasets, including sentence classification, named entity recognition, question answering, and abstractive summarization. Experimental results show that the proposed mT6 improves cross-lingual transferability over mT5.

pdf bib
Allocating Large Vocabulary Capacity for Cross-Lingual Language Model Pre-Training
Bo Zheng | Li Dong | Shaohan Huang | Saksham Singhal | Wanxiang Che | Ting Liu | Xia Song | Furu Wei
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Compared to monolingual models, cross-lingual models usually require a more expressive vocabulary to represent all languages adequately. We find that many languages are under-represented in recent cross-lingual language models due to the limited vocabulary capacity. To this end, we propose an algorithm VoCap to determine the desired vocabulary capacity of each language. However, increasing the vocabulary size significantly slows down the pre-training speed. In order to address the issues, we propose k-NN-based target sampling to accelerate the expensive softmax. Our experiments show that the multilingual vocabulary learned with VoCap benefits cross-lingual language model pre-training. Moreover, k-NN-based target sampling mitigates the side-effects of increasing the vocabulary size while achieving comparable performance and faster pre-training speed. The code and the pretrained multilingual vocabularies are available at https://github.com/bozheng-hit/VoCapXLM.

pdf bib
Consistency Regularization for Cross-Lingual Fine-Tuning
Bo Zheng | Li Dong | Shaohan Huang | Wenhui Wang | Zewen Chi | Saksham Singhal | Wanxiang Che | Ting Liu | Xia Song | Furu Wei
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Fine-tuning pre-trained cross-lingual language models can transfer task-specific supervision from one language to the others. In this work, we propose to improve cross-lingual fine-tuning with consistency regularization. Specifically, we use example consistency regularization to penalize the prediction sensitivity to four types of data augmentations, i.e., subword sampling, Gaussian noise, code-switch substitution, and machine translation. In addition, we employ model consistency to regularize the models trained with two augmented versions of the same training set. Experimental results on the XTREME benchmark show that our method significantly improves cross-lingual fine-tuning across various tasks, including text classification, question answering, and sequence labeling.

pdf bib
Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word Alignment
Zewen Chi | Li Dong | Bo Zheng | Shaohan Huang | Xian-Ling Mao | Heyan Huang | Furu Wei
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

The cross-lingual language models are typically pretrained with masked language modeling on multilingual text or parallel sentences. In this paper, we introduce denoising word alignment as a new cross-lingual pre-training task. Specifically, the model first self-label word alignments for parallel sentences. Then we randomly mask tokens in a bitext pair. Given a masked token, the model uses a pointer network to predict the aligned token in the other language. We alternately perform the above two steps in an expectation-maximization manner. Experimental results show that our method improves cross-lingual transferability on various datasets, especially on the token-level tasks, such as question answering, and structured prediction. Moreover, the model can serve as a pretrained word aligner, which achieves reasonably low error rate on the alignment benchmarks. The code and pretrained parameters are available at github.com/CZWin32768/XLM-Align.

pdf bib
InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training
Zewen Chi | Li Dong | Furu Wei | Nan Yang | Saksham Singhal | Wenhui Wang | Xia Song | Xian-Ling Mao | Heyan Huang | Ming Zhou
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

In this work, we present an information-theoretic framework that formulates cross-lingual language model pre-training as maximizing mutual information between multilingual-multi-granularity texts. The unified view helps us to better understand the existing methods for learning cross-lingual representations. More importantly, inspired by the framework, we propose a new pre-training task based on contrastive learning. Specifically, we regard a bilingual sentence pair as two views of the same meaning and encourage their encoded representations to be more similar than the negative examples. By leveraging both monolingual and parallel corpora, we jointly train the pretext tasks to improve the cross-lingual transferability of pre-trained models. Experimental results on several benchmarks show that our approach achieves considerably better performance. The code and pre-trained models are available at https://aka.ms/infoxlm.

pdf bib
Adapt-and-Distill: Developing Small, Fast and Effective Pretrained Language Models for Domains
Yunzhi Yao | Shaohan Huang | Wenhui Wang | Li Dong | Furu Wei
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
MiniLMv2: Multi-Head Self-Attention Relation Distillation for Compressing Pretrained Transformers
Wenhui Wang | Hangbo Bao | Shaohan Huang | Li Dong | Furu Wei
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Memory-Efficient Differentiable Transformer Architecture Search
Yuekai Zhao | Li Dong | Yelong Shen | Zhihua Zhang | Furu Wei | Weizhu Chen
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Learning to Sample Replacements for ELECTRA Pre-Training
Yaru Hao | Li Dong | Hangbo Bao | Ke Xu | Furu Wei
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Multilingual Machine Translation Systems from Microsoft for WMT21 Shared Task
Jian Yang | Shuming Ma | Haoyang Huang | Dongdong Zhang | Li Dong | Shaohan Huang | Alexandre Muzio | Saksham Singhal | Hany Hassan | Xia Song | Furu Wei
Proceedings of the Sixth Conference on Machine Translation

This report describes Microsoft’s machine translation systems for the WMT21 shared task on large-scale multilingual machine translation. We participated in all three evaluation tracks including Large Track and two Small Tracks where the former one is unconstrained and the latter two are fully constrained. Our model submissions to the shared task were initialized with DeltaLM, a generic pre-trained multilingual encoder-decoder model, and fine-tuned correspondingly with the vast collected parallel data and allowed data sources according to track settings, together with applying progressive learning and iterative back-translation approaches to further improve the performance. Our final submissions ranked first on three tracks in terms of the automatic evaluation metric.

pdf bib
A Semi-supervised Multi-task Learning Approach to Classify Customer Contact Intents
Li Dong | Matthew C. Spencer | Amir Biagi
Proceedings of the 4th Workshop on e-Commerce and NLP

In the area of customer support, understanding customers’ intents is a crucial step. Machine learning plays a vital role in this type of intent classification. In reality, it is typical to collect confirmation from customer support representatives (CSRs) regarding the intent prediction, though it can unnecessarily incur prohibitive cost to ask CSRs to assign existing or new intents to the mis-classified cases. Apart from the confirmed cases with and without intent labels, there can be a number of cases with no human curation. This data composition (Positives + Unlabeled + multiclass Negatives) creates unique challenges for model development. In response to that, we propose a semi-supervised multi-task learning paradigm. In this manuscript, we share our experience in building text-based intent classification models for a customer support service on an E-commerce website. We improve the performance significantly by evolving the model from multiclass classification to semi-supervised multi-task learning by leveraging the negative cases, domain- and task-adaptively pretrained ALBERT on customer contact texts, and a number of un-curated data with no labels. In the evaluation, the final model boosts the average AUC ROC by almost 20 points compared to the baseline finetuned multiclass classification ALBERT model.

2020

pdf bib
Harvesting and Refining Question-Answer Pairs for Unsupervised QA
Zhongli Li | Wenhui Wang | Li Dong | Furu Wei | Ke Xu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Question Answering (QA) has shown great success thanks to the availability of large-scale datasets and the effectiveness of neural models. Recent research works have attempted to extend these successes to the settings with few or no labeled data available. In this work, we introduce two approaches to improve unsupervised QA. First, we harvest lexically and syntactically divergent questions from Wikipedia to automatically construct a corpus of question-answer pairs (named as RefQA). Second, we take advantage of the QA model to extract more appropriate answers, which iteratively refines data over RefQA. We conduct experiments on SQuAD 1.1, and NewsQA by fine-tuning BERT without access to manually annotated data. Our approach outperforms previous unsupervised approaches by a large margin, and is competitive with early supervised models. We also show the effectiveness of our approach in the few-shot learning setting.

pdf bib
Can Monolingual Pretrained Models Help Cross-Lingual Classification?
Zewen Chi | Li Dong | Furu Wei | Xianling Mao | Heyan Huang
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Multilingual pretrained language models (such as multilingual BERT) have achieved impressive results for cross-lingual transfer. However, due to the constant model capacity, multilingual pre-training usually lags behind the monolingual competitors. In this work, we present two approaches to improve zero-shot cross-lingual classification, by transferring the knowledge from monolingual pretrained models to multilingual ones. Experimental results on two cross-lingual classification benchmarks show that our methods outperform vanilla multilingual fine-tuning.

pdf bib
Investigating Learning Dynamics of BERT Fine-Tuning
Yaru Hao | Li Dong | Furu Wei | Ke Xu
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

The recently introduced pre-trained language model BERT advances the state-of-the-art on many NLP tasks through the fine-tuning approach, but few studies investigate how the fine-tuning process improves the model performance on downstream tasks. In this paper, we inspect the learning dynamics of BERT fine-tuning with two indicators. We use JS divergence to detect the change of the attention mode and use SVCCA distance to examine the change to the feature extraction mode during BERT fine-tuning. We conclude that BERT fine-tuning mainly changes the attention mode of the last layers and modifies the feature extraction mode of the intermediate and last layers. Moreover, we analyze the consistency of BERT fine-tuning between different random seeds and different datasets. In summary, we provide a distinctive understanding of the learning dynamics of BERT fine-tuning, which sheds some light on improving the fine-tuning results.

2019

pdf bib
Learning a Unified Named Entity Tagger from Multiple Partially Annotated Corpora for Efficient Adaptation
Xiao Huang | Li Dong | Elizabeth Boschee | Nanyun Peng
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Named entity recognition (NER) identifies typed entity mentions in raw text. While the task is well-established, there is no universally used tagset: often, datasets are annotated for use in downstream applications and accordingly only cover a small set of entity types relevant to a particular task. For instance, in the biomedical domain, one corpus might annotate genes, another chemicals, and another diseases—despite the texts in each corpus containing references to all three types of entities. In this paper, we propose a deep structured model to integrate these “partially annotated” datasets to jointly identify all entity types appearing in the training corpora. By leveraging multiple datasets, the model can learn robust input representations; by building a joint structured model, it avoids potential conflicts caused by combining several models’ predictions at test time. Experiments show that the proposed model significantly outperforms strong multi-task learning baselines when training on multiple, partially annotated datasets and testing on datasets that contain tags from more than one of the training corpora.

pdf bib
Data-to-text Generation with Entity Modeling
Ratish Puduppully | Li Dong | Mirella Lapata
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Recent approaches to data-to-text generation have shown great promise thanks to the use of large-scale datasets and the application of neural network architectures which are trained end-to-end. These models rely on representation learning to select content appropriately, structure it coherently, and verbalize it grammatically, treating entities as nothing more than vocabulary tokens. In this work we propose an entity-centric neural architecture for data-to-text generation. Our model creates entity-specific representations which are dynamically updated. Text is generated conditioned on the data input and entity memory representations using hierarchical attention at each time step. We present experiments on the RotoWire benchmark and a (five times larger) new dataset on the baseball domain which we create. Our results show that the proposed model outperforms competitive baselines in automatic and human evaluation.

pdf bib
Learning to Ask Unanswerable Questions for Machine Reading Comprehension
Haichao Zhu | Li Dong | Furu Wei | Wenhui Wang | Bing Qin | Ting Liu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Machine reading comprehension with unanswerable questions is a challenging task. In this work, we propose a data augmentation technique by automatically generating relevant unanswerable questions according to an answerable question paired with its corresponding paragraph that contains the answer. We introduce a pair-to-sequence model for unanswerable question generation, which effectively captures the interactions between the question and the paragraph. We also present a way to construct training data for our question generation models by leveraging the existing reading comprehension dataset. Experimental results show that the pair-to-sequence model performs consistently better compared with the sequence-to-sequence baseline. We further use the automatically generated unanswerable questions as a means of data augmentation on the SQuAD 2.0 dataset, yielding 1.9 absolute F1 improvement with BERT-base model and 1.7 absolute F1 improvement with BERT-large model.

pdf bib
Visualizing and Understanding the Effectiveness of BERT
Yaru Hao | Li Dong | Furu Wei | Ke Xu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Language model pre-training, such as BERT, has achieved remarkable results in many NLP tasks. However, it is unclear why the pre-training-then-fine-tuning paradigm can improve performance and generalization capability across different tasks. In this paper, we propose to visualize loss landscapes and optimization trajectories of fine-tuning BERT on specific datasets. First, we find that pre-training reaches a good initial point across downstream tasks, which leads to wider optima and easier optimization compared with training from scratch. We also demonstrate that the fine-tuning procedure is robust to overfitting, even though BERT is highly over-parameterized for downstream tasks. Second, the visualization results indicate that fine-tuning BERT tends to generalize better because of the flat and wide optima, and the consistency between the training loss surface and the generalization error surface. Third, the lower layers of BERT are more invariant during fine-tuning, which suggests that the layers that are close to input learn more transferable representations of language.

pdf bib
Inspecting Unification of Encoding and Matching with Transformer: A Case Study of Machine Reading Comprehension
Hangbo Bao | Li Dong | Furu Wei | Wenhui Wang | Nan Yang | Lei Cui | Songhao Piao | Ming Zhou
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

Most machine reading comprehension (MRC) models separately handle encoding and matching with different network architectures. In contrast, pretrained language models with Transformer layers, such as GPT (Radford et al., 2018) and BERT (Devlin et al., 2018), have achieved competitive performance on MRC. A research question that naturally arises is: apart from the benefits of pre-training, how many performance gain comes from the unified network architecture. In this work, we evaluate and analyze unifying encoding and matching components with Transformer for the MRC task. Experimental results on SQuAD show that the unified model outperforms previous networks that separately treat encoding and matching. We also introduce a metric to inspect whether a Transformer layer tends to perform encoding or matching. The analysis results show that the unified model learns different modeling strategies compared with previous manually-designed models.

2018

pdf bib
Coarse-to-Fine Decoding for Neural Semantic Parsing
Li Dong | Mirella Lapata
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Semantic parsing aims at mapping natural language utterances into structured meaning representations. In this work, we propose a structure-aware neural architecture which decomposes the semantic parsing process into two stages. Given an input utterance, we first generate a rough sketch of its meaning, where low-level information (such as variable names and arguments) is glossed over. Then, we fill in missing details by taking into account the natural language input and the sketch itself. Experimental results on four datasets characteristic of different domains and meaning representations show that our approach consistently improves performance, achieving competitive results despite the use of relatively simple decoders.

pdf bib
Confidence Modeling for Neural Semantic Parsing
Li Dong | Chris Quirk | Mirella Lapata
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this work we focus on confidence modeling for neural semantic parsers which are built upon sequence-to-sequence models. We outline three major causes of uncertainty, and design various metrics to quantify these factors. These metrics are then used to estimate confidence scores that indicate whether model predictions are likely to be correct. Beyond confidence estimation, we identify which parts of the input contribute to uncertain predictions allowing users to interpret their model, and verify or refine its input. Experimental results show that our confidence model significantly outperforms a widely used method that relies on posterior probability, and improves the quality of interpretation compared to simply relying on attention scores.

2017

pdf bib
Learning to Paraphrase for Question Answering
Li Dong | Jonathan Mallinson | Siva Reddy | Mirella Lapata
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Question answering (QA) systems are sensitive to the many different ways natural language expresses the same information need. In this paper we turn to paraphrases as a means of capturing this knowledge and present a general framework which learns felicitous paraphrases for various QA tasks. Our method is trained end-to-end using question-answer pairs as a supervision signal. A question and its paraphrases serve as input to a neural scoring model which assigns higher weights to linguistic expressions most likely to yield correct answers. We evaluate our approach on QA over Freebase and answer sentence selection. Experimental results on three datasets show that our framework consistently improves performance, achieving competitive results despite the use of simple QA models.

pdf bib
Learning to Generate Product Reviews from Attributes
Li Dong | Shaohan Huang | Furu Wei | Mirella Lapata | Ming Zhou | Ke Xu
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

Automatically generating product reviews is a meaningful, yet not well-studied task in sentiment analysis. Traditional natural language generation methods rely extensively on hand-crafted rules and predefined templates. This paper presents an attention-enhanced attribute-to-sequence model to generate product reviews for given attribute information, such as user, product, and rating. The attribute encoder learns to represent input attributes as vectors. Then, the sequence decoder generates reviews by conditioning its output on these vectors. We also introduce an attention mechanism to jointly generate reviews and align words with input attributes. The proposed model is trained end-to-end to maximize the likelihood of target product reviews given the attributes. We build a publicly available dataset for the review generation task by leveraging the Amazon book reviews and their metadata. Experiments on the dataset show that our approach outperforms baseline methods and the attention mechanism significantly improves the performance of our model.

2016

pdf bib
Long Short-Term Memory-Networks for Machine Reading
Jianpeng Cheng | Li Dong | Mirella Lapata
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Solving and Generating Chinese Character Riddles
Chuanqi Tan | Furu Wei | Li Dong | Weifeng Lv | Ming Zhou
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Language to Logical Form with Neural Attention
Li Dong | Mirella Lapata
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2015

pdf bib
Splusplus: A Feature-Rich Two-stage Classifier for Sentiment Analysis of Tweets
Li Dong | Furu Wei | Yichun Yin | Ming Zhou | Ke Xu
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015)

pdf bib
A Statistical Parsing Framework for Sentiment Classification
Li Dong | Furu Wei | Shujie Liu | Ming Zhou | Ke Xu
Computational Linguistics, Volume 41, Issue 2 - June 2015

pdf bib
Question Answering over Freebase with Multi-Column Convolutional Neural Networks
Li Dong | Furu Wei | Ming Zhou | Ke Xu
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

2014

pdf bib
A Joint Segmentation and Classification Framework for Sentiment Analysis
Duyu Tang | Furu Wei | Bing Qin | Li Dong | Ting Liu | Ming Zhou
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

pdf bib
Adaptive Recursive Neural Network for Target-dependent Twitter Sentiment Classification
Li Dong | Furu Wei | Chuanqi Tan | Duyu Tang | Ming Zhou | Ke Xu
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)