Domain adaptation from labeled source domains to the target domain is important in practical summarization scenarios. However, the key challenge is domain knowledge disentanglement. In this work, we explore how to disentangle domain-invariant knowledge from source domains while learning specific knowledge of the target domain. Specifically, we propose a hypernetwork-assisted encoder-decoder architecture with parameter-efficient fine-tuning. It leverages a hypernetwork instruction learning module to generate domain-specific parameters from the encoded inputs accompanied by task-related instruction. Further, to better disentangle and transfer knowledge from source domains to the target domain, we introduce a meta-knowledge distillation strategy to build a meta-teacher model that captures domain-invariant knowledge across multiple domains and use it to transfer knowledge to students. Experiments on three dialogue summarization datasets show the effectiveness of the proposed model. Human evaluations also show the superiority of our model with regard to the summary generation quality.
Information extraction (IE) aims to extract complex structured information from the text. Numerous datasets have been constructed for various IE tasks, leading to time-consuming and labor-intensive data annotations. Nevertheless, most prevailing methods focus on training task-specific models, while the common knowledge among different IE tasks is not explicitly modeled. Moreover, the same phrase may have inconsistent labels in different tasks, which poses a big challenge for knowledge transfer using a unified model. In this study, we propose a regularization-based transfer learning method for IE (TIE) via an instructed graph decoder. Specifically, we first construct an instruction pool for datasets from all well-known IE tasks, and then present an instructed graph decoder, which decodes various complex structures into a graph uniformly based on corresponding instructions. In this way, the common knowledge shared with existing datasets can be learned and transferred to a new dataset with new labels. Furthermore, to alleviate the label inconsistency problem among various IE tasks, we introduce a task-specific regularization strategy, which does not update the gradients of two tasks with ‘opposite direction’. We conduct extensive experiments on 12 datasets spanning four IE tasks, and the results demonstrate the great advantages of our proposed method.
Gradient-based explanation methods are increasingly used to interpret neural models in natural language processing (NLP) due to their high fidelity. Such methods determine word-level importance using dimension-level gradient values through a norm function, often presuming equal significance for all gradient dimensions. However, in the context of Aspect-based Sentiment Analysis (ABSA), our preliminary research suggests that only specific dimensions are pertinent. To address this, we propose the Information Bottleneck-based Gradient (IBG) explanation framework for ABSA. This framework leverages an information bottleneck to refine word embeddings into a concise intrinsic dimension, maintaining essential features and omitting unrelated information. Comprehensive tests show that our IBG approach considerably improves both the models’ performance and the explanations’ clarity by identifying sentiment-aware features.
Aspect-Based Sentiment Analysis (ABSA) stands as a crucial task in predicting the sentiment polarity associated with identified aspects within text. However, a notable challenge in ABSA lies in precisely determining the aspects’ boundaries (start and end indices), especially for long ones, due to users’ colloquial expressions. We propose DiffusionABSA, a novel diffusion model tailored for ABSA, which extracts the aspects progressively step by step. Particularly, DiffusionABSA gradually adds noise to the aspect terms in the training process, subsequently learning a denoising process that progressively restores these terms in a reverse manner. To estimate the boundaries, we design a denoising neural network enhanced by a syntax-aware temporal attention mechanism to chronologically capture the interplay between aspects and surrounding text. Empirical evaluations conducted on eight benchmark datasets underscore the compelling advantages offered by DiffusionABSA when compared against robust baseline models. Our code is publicly available at https://github.com/Qlb6x/DiffusionABSA.
Relation extraction is a critical task in the field of natural language processing with numerous real-world applications. Existing research primarily focuses on monolingual relation extraction or cross-lingual enhancement for relation extraction. Yet, there remains a significant gap in understanding relation extraction in the mix-lingual (or code-switching) scenario, where individuals intermix contents from different languages within sentences, generating mix-lingual content. Due to the lack of a dedicated dataset, the effectiveness of existing relation extraction models in such a scenario is largely unexplored. To address this issue, we introduce a novel task of considering relation extraction in the mix-lingual scenario called MixRE and constructing the human-annotated dataset MixRED to support this task. In addition to constructing the MixRED dataset, we evaluate both state-of-the-art supervised models and large language models (LLMs) on MixRED, revealing their respective advantages and limitations in the mix-lingual scenario. Furthermore, we delve into factors influencing model performance within the MixRE task and uncover promising directions for enhancing the performance of both supervised models and LLMs in this novel task.
Text is ubiquitous in our visual world, conveying crucial information, such as in documents, websites, and everyday photographs. In this work, we propose UReader, a first exploration of universal OCR-free visually-situated language understanding based on the Multimodal Large Language Model (MLLM). By leveraging the shallow text recognition ability of the MLLM, we only finetuned 1.2% parameters and the training cost is much lower than previous work following domain-specific pretraining and finetuning paradigms. Concretely, UReader is jointly finetuned on a wide range of Visually-situated Language Understanding tasks via a unified instruction format. To enhance the visual text and semantic understanding, we further apply two auxiliary tasks with the same format, namely text reading and key points generation tasks. We design a shape-adaptive cropping module before the encoder-decoder architecture of MLLM to leverage the frozen low-resolution vision encoder for processing high-resolution images. Without downstream finetuning, our single model achieves state-of-the-art ocr-free performance in 8 out of 10 visually-situated language understanding tasks, across 5 domains: documents, tables, charts, natural images, and webpage screenshots. Codes and instruction-tuning datasets will be released.
Continual learning for named entity recognition (CL-NER) aims to enable models to continuously learn new entity types while retaining the ability to recognize previously learned ones. However, the current strategies fall short of effectively addressing the catastrophic forgetting of previously learned entity types. To tackle this issue, we propose the SKD-NER model, an efficient continual learning NER model based on the span-based approach, which innovatively incorporates reinforcement learning strategies to enhance the model’s ability against catastrophic forgetting. Specifically, we leverage knowledge distillation (KD) to retain memory and employ reinforcement learning strategies during the KD process to optimize the soft labeling and distillation losses generated by the teacher model to effectively prevent catastrophic forgetting during continual learning. This approach effectively prevents or mitigates catastrophic forgetting during continuous learning, allowing the model to retain previously learned knowledge while acquiring new knowledge. Our experiments on two benchmark datasets demonstrate that our model significantly improves the performance of the CL-NER task, outperforming state-of-the-art methods.
Sentiment analysis is increasingly viewed as a vital task both from an academic and a commercial standpoint. In this paper, we focus on the structured sentiment analysis task that is released on SemEval-2022 Task 10. The task aims to extract the structured sentiment information (e.g., holder, target, expression and sentiment polarity) in a text. We propose a simple and unified model for both the monolingual and crosslingual structured sentiment analysis tasks. We translate this task into an event extraction task by regrading the expression as the trigger word and the other elements as the arguments of the event. Particularly, we first extract the expression by judging its start and end indices. Then, to consider the expression, we design a conditional layer normalization algorithm to extract the holder and target based on the extracted expression. Finally, we infer the sentiment polarity based on the extracted structured information. Pre-trained language models are utilized to obtain the text representation. We conduct the experiments on seven datasets in five languages. It attracted 233 submissions in monolingual subtask and crosslingual subtask from 32 teams. Finally, we obtain the top 5 place on crosslingual tasks.
Succinctly summarizing dialogue is a task of growing interest, but inherent challenges, such as insufficient training data and low information density impede our ability to train abstractive models. In this work, we propose a novel curriculum-based prompt learning method with self-training to address these problems. Specifically, prompts are learned using a curriculum learning strategy that gradually increases the degree of prompt perturbation, thereby improving the dialogue understanding and modeling capabilities of our model. Unlabeled dialogue is incorporated by means of self-training so as to reduce the dependency on labeled data. We further investigate topic-aware prompts to better plan for the generation of summaries. Experiments confirm that our model substantially outperforms strong baselines and achieves new state-of-the-art results on the AMI and ICSI datasets. Human evaluations also show the superiority of our model with regard to the summary generation quality.
Event argument extraction (EAE) aims to extract arguments with given roles from texts, which have been widely studied in natural language processing. Most previous works have achieved good performance in specific EAE datasets with dedicated neural architectures. Whereas, these architectures are usually difficult to adapt to new datasets/scenarios with various annotation schemas or formats. Furthermore, they rely on large-scale labeled data for training, which is unavailable due to the high labelling cost in most cases. In this paper, we propose a multi-format transfer learning model with variational information bottleneck, which makes use of the information especially the common knowledge in existing datasets for EAE in new datasets. Specifically, we introduce a shared-specific prompt framework to learn both format-shared and format-specific knowledge from datasets with different formats. In order to further absorb the common knowledge for EAE and eliminate the irrelevant noise, we integrate variational information bottleneck into our architecture to refine the shared representation. We conduct extensive experiments on three benchmark datasets, and obtain new state-of-the-art performance on EAE.
Unsupervised sentence embeddings learning has been recently dominated by contrastive learning methods (e.g., SimCSE), which keep positive pairs similar and push negative pairs apart. The contrast operation aims to keep as much information as possible by maximizing the mutual information between positive instances, which leads to redundant information in sentence embedding. To address this problem, we present an information minimization based contrastive learning InforMin-CL model to retain the useful information and discard the redundant information by maximizing the mutual information and minimizing the information entropy between positive instances meanwhile for unsupervised sentence representation learning. Specifically, we find that information minimization can be achieved by simple contrast and reconstruction objectives. The reconstruction operation reconstitutes the positive instance via the other positive instance to minimize the information entropy between positive instances. We evaluate our model on fourteen downstream tasks, including both supervised and unsupervised (semantic textual similarity) tasks. Extensive experimental results show that our InforMin-CL obtains a state-of-the-art performance.
Generating explanations for recommender systems is essential for improving their transparency, as users often wish to understand the reason for receiving a specified recommendation. Previous methods mainly focus on improving the generation quality, but often produce generic explanations that fail to incorporate user and item specific details. To resolve this problem, we present Multi-Scale Distribution Deep Variational Autoencoders (MVAE).These are deep hierarchical VAEs with a prior network that eliminates noise while retaining meaningful signals in the input, coupled with a recognition network serving as the source of information to guide the learning of the prior network. Further, the Multi-scale distribution Learning Framework (MLF) along with a Target Tracking Kullback-Leibler divergence (TKL) mechanism are proposed to employ multi KL divergences at different scales for more effective learning. Extensive empirical experiments demonstrate that our methods can generate explanations with concrete input-specific contents.
This paper describes our system for SemEval-2021 Task 4: Reading Comprehension of Abstract Meaning. To accomplish this task, we utilize the Knowledge-Enhanced Graph Attention Network (KEGAT) architecture with a novel semantic space transformation strategy. It leverages heterogeneous knowledge to learn adequate evidences, and seeks for an effective semantic space of abstract concepts to better improve the ability of a machine in understanding the abstract meaning of natural language. Experimental results show that our system achieves strong performance on this task in terms of both imperceptibility and nonspecificity.
This paper presents our endeavor for solving task11, NLPContributionGraph, of SemEval-2021. The purpose of the task was to extract triples from a paper in the Nature Language Processing field for constructing an Open Research Knowledge Graph. The task includes three sub-tasks: detecting the contribution sentences in papers, identifying scientific terms and predicate phrases from the contribution sentences; and inferring triples in the form of (subject, predicate, object) as statements for Knowledge Graph building. In this paper, we apply an ensemble of various fine-tuned pre-trained language models (PLM) for tasks one and two. In addition, self-training methods are adopted for tackling the shortage of annotated data. For the third task, rather than using classic neural open information extraction (OIE) architectures, we generate potential triples via manually designed rules and develop a binary classifier to differentiate positive ones from others. The quantitative results show that we obtain the 4th, 2nd, and 2nd rank in three evaluation phases.
Recommendation dialogs require the system to build a social bond with users to gain trust and develop affinity in order to increase the chance of a successful recommendation. It is beneficial to divide up, such conversations with multiple subgoals (such as social chat, question answering, recommendation, etc.), so that the system can retrieve appropriate knowledge with better accuracy under different subgoals. In this paper, we propose a unified framework for common knowledge-based multi-subgoal dialog: knowledge-enhanced multi-subgoal driven recommender system (KERS). We first predict a sequence of subgoals and use them to guide the dialog model to select knowledge from a sub-set of existing knowledge graph. We then propose three new mechanisms to filter noisy knowledge and to enhance the inclusion of cleaned knowledge in the dialog response generation process. Experiments show that our method obtains state-of-the-art results on DuRecDial dataset in both automatic and human evaluation.
Modelling a word’s polarity in different contexts is a key task in sentiment analysis. Previous works mainly focus on domain dependencies, and assume words’ sentiments are invariant within a specific domain. In this paper, we relax this assumption by binding a word’s sentiment to its collocation words instead of domain labels. This finer view of sentiment contexts is particularly useful for identifying commonsense sentiments expressed in neural words such as “big” and “long”. Given a target (e.g., an aspect), we propose an effective “perturb-and-see” method to extract sentiment words modifying it from large-scale datasets. The reliability of the obtained target-aware sentiment lexicons is extensively evaluated both manually and automatically. We also show that a simple application of the lexicon is able to achieve highly competitive performances on the unsupervised opinion relation extraction task.
In recent years, knowledge graph embedding becomes a pretty hot research topic of artificial intelligence and plays increasingly vital roles in various downstream applications, such as recommendation and question answering. However, existing methods for knowledge graph embedding can not make a proper trade-off between the model complexity and the model expressiveness, which makes them still far from satisfactory. To mitigate this problem, we propose a lightweight modeling framework that can achieve highly competitive relational expressiveness without increasing the model complexity. Our framework focuses on the design of scoring functions and highlights two critical characteristics: 1) facilitating sufficient feature interactions; 2) preserving both symmetry and antisymmetry properties of relations. It is noteworthy that owing to the general and elegant design of scoring functions, our framework can incorporate many famous existing methods as special cases. Moreover, extensive experiments on public benchmarks demonstrate the efficiency and effectiveness of our framework. Source codes and data can be found at https://github.com/Wentao-Xu/SEEK.
Dialogue state tracker is responsible for inferring user intentions through dialogue history. Previous methods have difficulties in handling dialogues with long interaction context, due to the excessive information. We propose a Dialogue State Tracker with Slot Attention and Slot Information Sharing (SAS) to reduce redundant information’s interference and improve long dialogue context tracking. Specially, we first apply a Slot Attention to learn a set of slot-specific features from the original dialogue and then integrate them using a slot information sharing module. Our model yields a significantly improved performance compared to previous state-of the-art models on the MultiWOZ dataset.
This paper describes our proposed model for the Chinese Grammatical Error Diagnosis (CGED) task in NLPTEA2020. The goal of CGED is to use natural language processing techniques to automatically diagnose Chinese grammatical errors in sentences. To this end, we design and implement a CGED model named BERT with Score-feature Gates Error Diagnoser (BSGED), which is based on the BERT model, Bidirectional Long Short-Term Memory (BiLSTM) and conditional random field (CRF). In order to address the problem of losing partial-order relationships when embedding continuous feature items as with previous works, we propose a gating mechanism for integrating continuous feature items, which effectively retains the partial-order relationships between feature items. We perform LSTM processing on the encoding result of the BERT model, and further extract the sequence features. In the final test-set evaluation, we obtained the highest F1 score at the detection level and are among the top 3 F1 scores at the identification level.
Pre-trained language models have been widely applied to cross-domain NLP tasks like sentiment analysis, achieving state-of-the-art performance. However, due to the variety of users’ emotional expressions across domains, fine-tuning the pre-trained models on the source domain tends to overfit, leading to inferior results on the target domain. In this paper, we pre-train a sentiment-aware language model (SentiX) via domain-invariant sentiment knowledge from large-scale review datasets, and utilize it for cross-domain sentiment analysis task without fine-tuning. We propose several pre-training tasks based on existing lexicons and annotations at both token and sentence levels, such as emoticons, sentiment words, and ratings, without human interference. A series of experiments are conducted and the results indicate the great advantages of our model. We obtain new state-of-the-art results in all the cross-domain sentiment analysis tasks, and our proposed SentiX can be trained with only 1% samples (18 samples) and it achieves better performance than BERT with 90% samples.
This paper describes our system for SemEval-2020 Task 4: Commonsense Validation and Explanation (Wang et al., 2020). We propose a novel Knowledge-enhanced Graph Attention Network (KEGAT) architecture for this task, leveraging heterogeneous knowledge from both the structured knowledge base (i.e. ConceptNet) and unstructured text to better improve the ability of a machine in commonsense understanding. This model has a powerful commonsense inference capability via utilizing suitable commonsense incorporation methods and upgraded data augmentation techniques. Besides, an internal sharing mechanism is cooperated to prohibit our model from insufficient and excessive reasoning for commonsense. As a result, this model performs quite well in both validation and explanation. For instance, it achieves state-of-the-art accuracy in the subtask called Commonsense Explanation (Multi-Choice). We officially name the system as ECNU-SenseMaker. Code is publicly available at https://github.com/ECNU-ICA/ECNU-SenseMaker.
Distant supervision has obtained great progress on relation classification task. However, it still suffers from noisy labeling problem. Different from previous works that underutilize noisy data which inherently characterize the property of classification, in this paper, we propose RCEND, a novel framework to enhance Relation Classification by Exploiting Noisy Data. First, an instance discriminator with reinforcement learning is designed to split the noisy data into correctly labeled data and incorrectly labeled data. Second, we learn a robust relation classifier in semi-supervised learning way, whereby the correctly and incorrectly labeled data are treated as labeled and unlabeled data respectively. The experimental results show that our method outperforms the state-of-the-art models.
This paper presents our single model to Subtask 1 of SemEval 2018 Task 2: Emoji Prediction in English. In order to predict the emoji that may be contained in a tweet, the basic model we use is an attention-based recurrent neural network which has achieved satisfactory performs in Natural Language processing. Considering the text comes from social media, it contains many discrepant abbreviations and online terms, we also combine word-level and character-level word vector embedding to better handling the words not appear in the vocabulary. Our single model1 achieved 29.50% Macro F-score in test data and ranks 9th among 48 teams.