The ability to follow instructions is crucial for Large Language Models (LLMs) to handle various real-world applications. Existing benchmarks primarily focus on evaluating pure response quality, rather than assessing whether the response follows constraints stated in the instruction. To fill this research gap, in this paper, we propose FollowBench, a Multi-level Fine-grained Constraints Following Benchmark for LLMs. FollowBench comprehensively includes five different types (i.e., Content, Situation, Style, Format, and Example) of fine-grained constraints. To enable a precise constraint following estimation on diverse difficulties, we introduce a Multi-level mechanism that incrementally adds a single constraint to the initial instruction at each increased level. To assess whether LLMs’ outputs have satisfied every individual constraint, we propose to prompt strong LLMs with constraint-evolution paths to handle challenging open-ended instructions. By evaluating 13 closed-source and open-source popular LLMs on FollowBench, we highlight the weaknesses of LLMs in instruction following and point towards potential avenues for future work. The data and code are publicly available at https://github.com/YJiangcm/FollowBench.
Knowledge editing techniques, aiming to efficiently modify a minor proportion of knowledge in large language models (LLMs) without negatively impacting performance across other inputs, have garnered widespread attention. However, existing methods predominantly rely on memorizing the updated knowledge, impeding LLMs from effectively combining the new knowledge with their inherent knowledge when answering questions. To this end, we propose a Learning to Edit (LTE) framework, focusing on teaching LLMs to apply updated knowledge into input questions, inspired by the philosophy of “Teach a man to fish.” LTE features a two-phase process: (i) the Alignment Phase, which fine-tunes LLMs on a meticulously curated parallel dataset to make reliable, in-scope edits while preserving out-of-scope information and linguistic proficiency; and (ii) the Inference Phase, which employs a retrieval-based mechanism for real-time and mass knowledge editing. By comparing our approach with seven advanced baselines across four popular knowledge editing benchmarks and two LLM architectures, we demonstrate LTE’s superiority in knowledge editing performance, robustness in both batch and sequential editing, minimal interference on general tasks, and rapid editing speeds. The data and code are publicly available at https://github.com/YJiangcm/LTE.
Managing long sequences has become an important and necessary feature for large language models (LLMs). However, assessing their ability to handle long contexts remains a challenge. This paper introduces M4LE, a Multi-ability, Multi-range, Multi-task, Multi-domain benchmark for Long-context Evaluation. It encompasses 36 NLP datasets, covering 11 types of tasks and 12 domains, providing a comprehensive test bed. To address the lack of tasks featuring naturally long sequences, we propose an automatic approach to convert short-sequence tasks into long-sequence scenarios. These scenarios evaluate LLMs’ long-context understanding across five key abilities: understanding of single or multiple relevant spans in long contexts based on explicit or semantic hints, and global context understanding. This automatic approach allows us to create instances evenly distributed from 1k to 8k input length. Our evaluation of 11 prominent LLMs reveals that 1) Current LLMs struggle to understand long context, particularly when tasks require multiple-span attention. 2) Semantic retrieval is more difficult for competent LLMs. 3) Models fine-tuned on longer text with position interpolation have comparable performance to those using Neural Tangent Kernel (NTK) aware scaling methods without fine-tuning. We make our benchmark publicly available to encourage future research in this challenging area.
Although lyrics generation has achieved significant progress in recent years, it has limited practical applications because the generated lyrics cannot be performed without composing compatible melodies. In this work, we bridge this practical gap by proposing a song rewriting system which rewrites the lyrics of an existing song such that the generated lyrics are compatible with the rhythm of the existing melody and thus singable. In particular, we propose SongRewriter, a controllable Chinese lyric generation and editing system which assists users without prior knowledge of melody composition. The system is trained by a randomized multi-level masking strategy which produces a unified model for generating entirely new lyrics or editing a few fragments. To improve the controllabiliy of the generation process, we further incorporate a keyword prompt to control the lexical choices of the content and propose novel decoding constraints and a vowel modeling task to enable flexible end and internal rhyme schemes. While prior rhyming metrics are mainly for rap lyrics, we propose three novel rhyming evaluation metrics for song lyrics. Both automatic and human evaluations show that the proposed model performs better than the state-of-the-art models in both contents and rhyming quality.
To alleviate the data scarcity problem in End-to-end speech translation (ST), pre-training on data for speech recognition and machine translation is considered as an important technique. However, the modality gap between speech and text prevents the ST model from efficiently inheriting knowledge from the pre-trained models. In this work, we propose AdaTranS for end-to-end ST. It adapts the speech features with a new shrinking mechanism to mitigate the length mismatch between speech and text features by predicting word boundaries. Experiments on the MUST-C dataset demonstrate that AdaTranS achieves better performance than the other shrinking-based methods, with higher inference speed and lower memory usage. Further experiments also show that AdaTranS can be equipped with additional alignment losses to further improve performance.
Cross-lingual transfer (CLT) is of various applications. However, labeled cross-lingual corpus is expensive or even inaccessible, especially in the fields where labels are private, such as diagnostic results of symptoms in medicine and user profiles in business. Nevertheless, there are off-the-shelf models in these sensitive fields. Instead of pursuing the original labels, a workaround for CLT is to transfer knowledge from the off-the-shelf models without labels. To this end, we define a novel CLT problem named FreeTransfer-X that aims to achieve knowledge transfer from the off-the-shelf models in rich-resource languages. To address the problem, we propose a 2-step knowledge distillation (KD, Hinton et al., 2015) framework based on multilingual pre-trained language models (mPLM). The significant improvement over strong neural machine translation (NMT) baselines demonstrates the effectiveness of the proposed method. In addition to reducing annotation cost and protecting private labels, the proposed method is compatible with different networks and easy to be deployed. Finally, a range of analyses indicate the great potential of the proposed method.
Pre-trained sequence-to-sequence models have significantly improved Neural Machine Translation (NMT). Different from prior works where pre-trained models usually adopt an unidirectional decoder, this paper demonstrates that pre-training a sequence-to-sequence model but with a bidirectional decoder can produce notable performance gains for both Autoregressive and Non-autoregressive NMT. Specifically, we propose CeMAT, a conditional masked language model pre-trained on large-scale bilingual and monolingual corpora in many languages. We also introduce two simple but effective methods to enhance the CeMAT, aligned code-switching & masking and dynamic dual-masking. We conduct extensive experiments and show that our CeMAT can achieve significant performance improvement for all scenarios from low- to extremely high-resource languages, i.e., up to +14.4 BLEU on low resource and +7.9 BLEU improvements on average for Autoregressive NMT. For Non-autoregressive NMT, we demonstrate it can also produce consistent performance gains, i.e., up to +5.3 BLEU. To the best of our knowledge, this is the first work to pre-train a unified model for fine-tuning on both NMT tasks. Code, data, and pre-trained models are available at https://github.com/huawei-noah/Pretrained-Language-Model/CeMAT
Triangular machine translation is a special case of low-resource machine translation where the language pair of interest has limited parallel data, but both languages have abundant parallel data with a pivot language. Naturally, the key to triangular machine translation is the successful exploitation of such auxiliary data. In this work, we propose a transfer-learning-based approach that utilizes all types of auxiliary data. As we train auxiliary source-pivot and pivot-target translation models, we initialize some parameters of the pivot side with a pre-trained language model and freeze them to encourage both translation models to work in the same pivot language space, so that they can be smoothly transferred to the source-target translation model. Experiments show that our approach can outperform previous ones.
This paper describes the system submitted to AutoSimTrans 2022 from Huawei Noah’s Ark Lab, which won the first place in the audio input track of the Chinese-English translation task. Our system is based on RealTranS, an end-to-end simultaneous speech translation model. We enhance the model with pretraining, by initializing the acoustic encoder with ASR encoder, and the semantic encoder and decoder with NMT encoder and decoder, respectively. To relieve the data scarcity, we further construct pseudo training corpus as a kind of knowledge distillation with ASR data and the pretrained NMT model. Meanwhile, we also apply several techniques to improve the robustness and domain generalizability, including punctuation removal, token-level knowledge distillation and multi-domain finetuning. Experiments show that our system significantly outperforms the baselines at all latency and also verify the effectiveness of our proposed methods.
This paper describes the NoahNMT system submitted to the WMT 2021 shared task of Very Low Resource Supervised Machine Translation. The system is a standard Transformer model equipped with our recent technique of dual transfer. It also employs widely used techniques that are known to be helpful for neural machine translation, including iterative back-translation, selected finetuning, and ensemble. The final submission achieves the top BLEU for three translation directions.
This paper describes the system submitted to the IWSLT 2021 Multilingual Speech Translation (MultiST) task from Huawei Noah’s Ark Lab. We use a unified transformer architecture for our MultiST model, so that the data from different modalities (i.e., speech and text) and different tasks (i.e., Speech Recognition, Machine Translation, and Speech Translation) can be exploited to enhance the model’s ability. Specifically, speech and text inputs are firstly fed to different feature extractors to extract acoustic and textual features, respectively. Then, these features are processed by a shared encoder–decoder architecture. We apply several training techniques to improve the performance, including multi-task learning, task-level curriculum learning, data augmentation, etc. Our final system achieves significantly better results than bilingual baselines on supervised language pairs and yields reasonable results on zero-shot language pairs.
Learning multilingual and multi-domain translation model is challenging as the heterogeneous and imbalanced data make the model converge inconsistently over different corpora in real world. One common practice is to adjust the share of each corpus in the training, so that the learning process is balanced and low-resource cases can benefit from the high resource ones. However, automatic balancing methods usually depend on the intra- and inter-dataset characteristics, which is usually agnostic or requires human priors. In this work, we propose an approach, MultiUAT, that dynamically adjusts the training data usage based on the model’s uncertainty on a small set of trusted clean data for multi-corpus machine translation. We experiments with two classes of uncertainty measures on multilingual (16 languages with 4 settings) and multi-domain settings (4 for in-domain and 2 for out-of-domain on English-German translation) and demonstrate our approach MultiUAT substantially outperforms its baselines, including both static and dynamic strategies. We analyze the cross-domain transfer and show the deficiency of static and similarity based methods.
Previous works have shown that contextual information can improve the performance of neural machine translation (NMT). However, most existing document-level NMT methods failed to leverage contexts beyond a few set of previous sentences. How to make use of the whole document as global contexts is still a challenge. To address this issue, we hypothesize that a document can be represented as a graph that connects relevant contexts regardless of their distances. We employ several types of relations, including adjacency, syntactic dependency, lexical consistency, and coreference, to construct the document graph. Then, we incorporate both source and target graphs into the conventional Transformer architecture with graph convolutional networks. Experiments on various NMT benchmarks, including IWSLT English–French, Chinese-English, WMT English–German and Opensubtitle English–Russian, demonstrate that using document graphs can significantly improve the translation quality. Extensive analysis verifies that the document graph is beneficial for capturing discourse phenomena.
Despite the success of neural machine translation (NMT), simultaneous neural machine translation (SNMT), the task of translating in real time before a full sentence has been observed, remains challenging due to the syntactic structure difference and simultaneity requirements. In this paper, we propose a general framework for adapting neural machine translation to translate simultaneously. Our framework contains two parts: prefix translation that utilizes a consecutive NMT model to translate source prefixes and a stopping criterion that determines when to stop the prefix translation. Experiments on three translation corpora and two language pairs show the efficacy of the proposed framework on balancing the quality and latency in adapting NMT to perform simultaneous translation.
This paper describes our work in the WAT 2020 Indic Multilingual Translation Task. We participated in all 7 language pairs (En<->Bn/Hi/Gu/Ml/Mr/Ta/Te) in both directions under the constrained condition—using only the officially provided data. Using transformer as a baseline, our Multi->En and En->Multi translation systems achieve the best performances. Detailed data filtering and data domain selection are the keys to performance enhancement in our experiment, with an average improvement of 2.6 BLEU scores for each language pair in the En->Multi system and an average improvement of 4.6 BLEU scores regarding the Multi->En. In addition, we employed language independent adapter to further improve the system performances. Our submission obtains competitive results in the final evaluation.
This paper presents our work in the WMT 2020 News Translation Shared Task. We participate in 3 language pairs including Zh/En, Km/En, and Ps/En and in both directions under the constrained condition. We use the standard Transformer-Big model as the baseline and obtain the best performance via two variants with larger parameter sizes. We perform detailed pre-processing and filtering on the provided large-scale bilingual and monolingual dataset. Several commonly used strategies are used to train our models such as Back Translation, Ensemble Knowledge Distillation, etc. We also conduct experiment with similar language augmentation, which lead to positive results, although not used in our submission. Our submission obtains remarkable results in the final evaluation.
This paper describes Huawei’s submissions to the WMT20 biomedical translation shared task. Apart from experimenting with finetuning on domain-specific bitexts, we explore effects of in-domain dictionaries on enhancing cross-domain neural machine translation performance. We utilize a transfer learning strategy through pre-trained machine translation models and extensive scope of engineering endeavors. Four of our ten submissions achieve state-of-the-art performance according to the official automatic evaluation results, namely translation directions on English<->French, English->German and English->Italian.
This paper presents our work in the WMT 2020 Word and Sentence-Level Post-Editing Quality Estimation (QE) Shared Task. Our system follows standard Predictor-Estimator architecture, with a pre-trained Transformer as the Predictor, and specific classifiers and regressors as Estimators. We integrate Bottleneck Adapter Layers in the Predictor to improve the transfer learning efficiency and prevent from over-fitting. At the same time, we jointly train the word- and sentence-level tasks with a unified model with multitask learning. Pseudo-PE assisted QE (PEAQE) is proposed, resulting in significant improvements on the performance. Our submissions achieve competitive result in word/sentence-level sub-tasks for both of En-De/Zh language pairs.
This paper describes Huawei’s neural machine translation systems for the WMT 2019 biomedical translation shared task. We trained and fine-tuned our systems on a combination of out-of-domain and in-domain parallel corpora for six translation directions covering English–Chinese, English–French and English–German language pairs. Our submitted systems achieve the best BLEU scores on English–French and English–German language pairs according to the official evaluation results. In the English–Chinese translation task, our systems are in the second place. The enhanced performance is attributed to more in-domain training and more sophisticated models developed. Development of translation models and transfer learning (or domain adaptation) methods has significantly contributed to the progress of the task.
In this paper, we present an improved graph-based translation model which segments an input graph into node-induced subgraphs by taking source context into consideration. Translations are generated by combining subgraph translations left-to-right using beam search. Experiments on Chinese–English and German–English demonstrate that the context-aware segmentation significantly improves the baseline graph-based model.
We showcase TODAY, a semantics-enhanced task-oriented dialogue translation system, whose novelties are: (i) task-oriented named entity (NE) definition and a hybrid strategy for NE recognition and translation; and (ii) a novel grounded semantic method for dialogue understanding and task-order management. TODAY is a case-study demo which can efficiently and accurately assist customers and agents in different languages to reach an agreement in a dialogue for the hotel booking.
In recent years, neural machine translation (NMT) has demonstrated state-of-the-art machine translation (MT) performance. It is a new approach to MT, which tries to learn a set of parameters to maximize the conditional probability of target sentences given source sentences. In this paper, we present a novel approach to improve the translation performance in NMT by conveying topic knowledge during translation. The proposed topic-informed NMT can increase the likelihood of selecting words from the same topic and domain for translation. Experimentally, we demonstrate that topic-informed NMT can achieve a 1.15 (3.3% relative) and 1.67 (5.4% relative) absolute improvement in BLEU score on the Chinese-to-English language pair using NIST 2004 and 2005 test sets, respectively, compared to NMT without topic information.
In this paper, we describe an effective translation model combination approach based on the estimation of a probabilistic Support Vector Machine (SVM). We collect domain knowledge from both in-domain and general-domain corpora inspired by a commonly used data selection algorithm, which we then use as features for the SVM training. Drawing on previous work on binary-featured phrase table fill-up (Nakov, 2008; Bisazza et al., 2011), we substitute the binary feature in the original work with our probabilistic domain-likeness feature. Later, we design two experiments to evaluate the proposed probabilistic feature-based approach on the French-to-English language pair using data provided at WMT07, WMT13 and IWLST11 translation tasks. Our experiments demonstrate that translation performance can gain significant improvements of up to +0.36 and +0.82 BLEU scores by using our probabilistic feature-based translation model fill-up approach compared with the binary featured fill-up approach in both experiments.
Combining Translation Memory (TM) with Statistical Machine Translation (SMT) together has been demonstrated to be beneficial. In this paper, we present a discriminative framework which can integrate TM into SMT by incorporating TM-related feature functions. Experiments on English–Chinese and English–French tasks show that our system using TM feature functions only from the best fuzzy match performs significantly better than the baseline phrase- based system on both tasks, and our discriminative model achieves comparable results to those of an effective generative model which uses similar features. Furthermore, with the capacity of handling a large amount of features in the discriminative framework, we propose a method to efficiently use multiple fuzzy matches which brings more feature functions and further significantly improves our system.