Lianhui Qin


2024

pdf bib
MacGyver: Are Large Language Models Creative Problem Solvers?
Yufei Tian | Abhilasha Ravichander | Lianhui Qin | Ronan Le Bras | Raja Marjieh | Nanyun Peng | Yejin Choi | Thomas Griffiths | Faeze Brahman
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

We explore the creative problem-solving capabilities of modern LLMs in a novel constrained setting. To this end, we create MACGYVER, an automatically generated dataset consisting of over 1,600 real-world problems deliberately designed to trigger innovative usage of objects and necessitate out-of-the-box thinking. We then present our collection to both LLMs and humans to compare and contrast their problem-solving abilities. MACGYVER is challenging for both groups, but in unique and complementary ways. For instance, humans excel in tasks they are familiar with but struggle with domain-specific knowledge, leading to a higher variance. In contrast, LLMs, exposed to a variety of specialized knowledge, attempt broader problems but fail by proposing physically-infeasible actions. Finally, we provide a detailed error analysis of LLMs, and demonstrate the potential of enhancing their problem-solving ability with novel prompting techniques such as iterative step-wise reflection and divergent-convergent thinking.This work (1) introduces a fresh arena for intelligent agents focusing on intricate aspects of physical reasoning, planning, and unconventional thinking, which supplements the existing spectrum of machine intelligence; and (2) provides insight into the constrained problem-solving capabilities of both humans and AI.

2023

pdf bib
Inference-Time Policy Adapters (IPA): Tailoring Extreme-Scale LMs without Fine-tuning
Ximing Lu | Faeze Brahman | Peter West | Jaehun Jung | Khyathi Chandu | Abhilasha Ravichander | Prithviraj Ammanabrolu | Liwei Jiang | Sahana Ramnath | Nouha Dziri | Jillian Fisher | Bill Lin | Skyler Hallinan | Lianhui Qin | Xiang Ren | Sean Welleck | Yejin Choi
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

While extreme-scale language models have demonstrated exceptional performance on a variety of language tasks, the degree of control over these language models through pure prompting can often be limited. Directly fine-tuning such language models can be effective for tailoring them, but it can be either extremely costly (e.g., GPT-3) or not even feasible for the broader community (e.g., GPT-4). We propose Inference-time Policy Adapters (IPA), which efficiently tailors a language model such as GPT-3 without fine-tuning it. IPA guides a large base model during decoding time through a lightweight policy adapter trained to optimize an arbitrary user objective with reinforcement learning. On five challenging text generation tasks, such as toxicity reduction and lexically constrained generation, IPA consistently brings significant improvements over off-the-shelf language models. It outperforms competitive baseline methods, sometimes even including expensive fine-tuning. In particular, tailoring GPT-2 with IPA can outperform GPT-3, while tailoring GPT-3 with IPA brings a major performance boost over GPT-3 (and sometimes even over GPT-4). Our promising results highlight the potential of IPA as a lightweight alternative to tailoring extreme-scale language models.

pdf bib
I2D2: Inductive Knowledge Distillation with NeuroLogic and Self-Imitation
Chandra Bhagavatula | Jena D. Hwang | Doug Downey | Ronan Le Bras | Ximing Lu | Lianhui Qin | Keisuke Sakaguchi | Swabha Swayamdipta | Peter West | Yejin Choi
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Commonsense capabilities of pre-trained language models dramatically improve with scale, leading many to believe that scale is the only winning recipe. But is it? Here, we investigate an alternative that a priori seems impossible: can smaller language models (e.g., GPT-2) win over models that are orders of magnitude larger and better (e.g., GPT-3), if powered with novel commonsense distillation algorithms?The key intellectual challenge is to design a learning algorithm that achieve a competitive level of commonsense acquisition, without relying on the benefits of scale. In particular, we study generative models of commonsense knowledge, focusing on the task of generating generics, statements of commonsense facts about everyday concepts, e.g., birds can fly. We introduce I2D2, a novel commonsense distillation framework that loosely follows the Symbolic Knowledge Distillation of West et al. but breaks the dependence on the extreme-scale teacher model with two innovations: (1) the novel adaptation of NeuroLogic Decoding to enhance the generation quality of the weak, off-the-shelf language models, and (2) self-imitation learning to iteratively learn from the model’s own enhanced commonsense acquisition capabilities. Empirical results suggest that scale is not the only way, as novel algorithms can be a promising alternative. Moreover, our study leads to a new corpus of generics, Gen-A-tomic, that is the largest and highest quality available to date.

2022

pdf bib
Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations
Jaehun Jung | Lianhui Qin | Sean Welleck | Faeze Brahman | Chandra Bhagavatula | Ronan Le Bras | Yejin Choi
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Pre-trained language models (LMs) struggle with consistent reasoning; recently, prompting LMs to generate explanations that self-guide the inference has emerged as a promising direction to amend this. However, these approaches are fundamentally bounded by the correctness of explanations, which themselves are often noisy and inconsistent. In this work, we develop Maieutic Prompting, which aims to infer a correct answer to a question even from the unreliable generations of LM. Maieutic Prompting induces a tree of explanations abductively (e.g. X is true, because ...) and recursively, then frames the inference as a satisfiability problem over these explanations and their logical relations. We test Maieutic Prompting for true/false QA on three challenging benchmarks that require complex commonsense reasoning. Maieutic Prompting achieves up to 20% better accuracy than state-of-the-art prompting methods, and as a fully unsupervised approach, performs competitively with supervised models. We also show that Maieutic Prompting improves robustness in inference while providing interpretable rationales.

pdf bib
Diversifying Content Generation for Commonsense Reasoning with Mixture of Knowledge Graph Experts
Wenhao Yu | Chenguang Zhu | Lianhui Qin | Zhihan Zhang | Tong Zhao | Meng Jiang
Findings of the Association for Computational Linguistics: ACL 2022

Generative commonsense reasoning (GCR) in natural language is to reason about the commonsense while generating coherent text. Recent years have seen a surge of interest in improving the generation quality of commonsense reasoning tasks. Nevertheless, these approaches have seldom investigated diversity in the GCR tasks, which aims to generate alternative explanations for a real-world situation or predict all possible outcomes. Diversifying GCR is challenging as it expects to generate multiple outputs that are not only semantically different but also grounded in commonsense knowledge. In this paper, we propose MoKGE, a novel method that diversifies the generative reasoning by a mixture of expert (MoE) strategy on commonsense knowledge graphs (KG). A set of knowledge experts seek diverse reasoning on KG to encourage various generation outputs. Empirical experiments demonstrated that MoKGE can significantly improve the diversity while achieving on par performance on accuracy on two GCR benchmarks, based on both automatic and human evaluations.

pdf bib
Diversifying Content Generation for Commonsense Reasoning with Mixture of Knowledge Graph Experts
Wenhao Yu | Chenguang Zhu | Lianhui Qin | Zhihan Zhang | Tong Zhao | Meng Jiang
Proceedings of the 2nd Workshop on Deep Learning on Graphs for Natural Language Processing (DLG4NLP 2022)

Generative commonsense reasoning (GCR) in natural language is to reason about the commonsense while generating coherent text. Recent years have seen a surge of interest in improving the generation quality of commonsense reasoning tasks. Nevertheless, these approaches have seldom investigated diversity in the GCR tasks, which aims to generate alternative explanations for a real-world situation or predict all possible outcomes. Diversifying GCR is challenging as it expects to generate multiple outputs that are not only semantically different but also grounded in commonsense knowledge. In this paper, we propose MoKGE, a novel method that diversifies the generative reasoning by a mixture of expert (MoE) strategy on commonsense knowledge graphs (KG). A set of knowledge experts seek diverse reasoning on KG to encourage various generation outputs. Empirical experiments demonstrated that MoKGE can significantly improve the diversity while achieving on par performance on accuracy on two GCR benchmarks, based on both automatic and human evaluations.

pdf bib
NeuroLogic A*esque Decoding: Constrained Text Generation with Lookahead Heuristics
Ximing Lu | Sean Welleck | Peter West | Liwei Jiang | Jungo Kasai | Daniel Khashabi | Ronan Le Bras | Lianhui Qin | Youngjae Yu | Rowan Zellers | Noah A. Smith | Yejin Choi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The dominant paradigm for neural text generation is left-to-right decoding from autoregressive language models. Constrained or controllable generation under complex lexical constraints, however, requires foresight to plan ahead feasible future paths. Drawing inspiration from the A* search algorithm, we propose NeuroLogic A*esque, a decoding algorithm that incorporates heuristic estimates of future cost. We develop lookahead heuristics that are efficient for large-scale language models, making our method a drop-in replacement for common techniques such as beam search and top-k sampling. To enable constrained generation, we build on NeuroLogic decoding (Lu et al., 2021), combining its flexibility in incorporating logical constraints with A*esque estimates of future constraint satisfaction. Our approach outperforms competitive baselines on five generation tasks, and achieves new state-of-the-art performance on table-to-text generation, constrained machine translation, and keyword-constrained generation. The improvements are particularly notable on tasks that require complex constraint satisfaction or in few-shot or zero-shot settings. NeuroLogic A*esque illustrates the power of decoding for improving and enabling new capabilities of large-scale language models.

pdf bib
Prompt Waywardness: The Curious Case of Discretized Interpretation of Continuous Prompts
Daniel Khashabi | Xinxi Lyu | Sewon Min | Lianhui Qin | Kyle Richardson | Sean Welleck | Hannaneh Hajishirzi | Tushar Khot | Ashish Sabharwal | Sameer Singh | Yejin Choi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Fine-tuning continuous prompts for target tasks has recently emerged as a compact alternative to full model fine-tuning. Motivated by these promising results, we investigate the feasibility of extracting a discrete (textual) interpretation of continuous prompts that is faithful to the problem they solve. In practice, we observe a “wayward” behavior between the task solved by continuous prompts and their nearest neighbor discrete projections: We can find continuous prompts that solve a task while being projected to an arbitrary text (e.g., definition of a different or even a contradictory task), while being within a very small (2%) margin of the best continuous prompt of the same size for the task. We provide intuitions behind this odd and surprising behavior, as well as extensive empirical analyses quantifying the effect of various parameters. For instance, for larger model sizes we observe higher waywardness, i.e, we can find prompts that more closely map to any arbitrary text with a smaller drop in accuracy. These findings have important implications relating to the difficulty of faithfully interpreting continuous prompts and their generalization across models and tasks, providing guidance for future progress in prompting language models.

2021

pdf bib
TuringAdvice: A Generative and Dynamic Evaluation of Language Use
Rowan Zellers | Ari Holtzman | Elizabeth Clark | Lianhui Qin | Ali Farhadi | Yejin Choi
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We propose TuringAdvice, a new challenge task and dataset for language understanding models. Given a written situation that a real person is currently facing, a model must generate helpful advice in natural language. Our evaluation framework tests a fundamental aspect of human language understanding: our ability to use language to resolve open-ended situations by communicating with each other. Empirical results show that today’s models struggle at TuringAdvice, even multibillion parameter models finetuned on 600k in-domain training examples. The best model, T5, writes advice that is at least as helpful as human-written advice in only 14% of cases; a much larger non-finetunable GPT3 model does even worse at 4%. This low performance reveals language understanding errors that are hard to spot outside of a generative setting, showing much room for progress.

pdf bib
TIMEDIAL: Temporal Commonsense Reasoning in Dialog
Lianhui Qin | Aditya Gupta | Shyam Upadhyay | Luheng He | Yejin Choi | Manaal Faruqui
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Everyday conversations require understanding everyday events, which in turn, requires understanding temporal commonsense concepts interwoven with those events. Despite recent progress with massive pre-trained language models (LMs) such as T5 and GPT-3, their capability of temporal reasoning in dialogs remains largely under-explored. In this paper, we present the first study to investigate pre-trained LMs for their temporal reasoning capabilities in dialogs by introducing a new task and a crowd-sourced English challenge set, TimeDial. We formulate TimeDial as a multiple choice cloze task with over 1.1K carefully curated dialogs. Empirical results demonstrate that even the best performing models struggle on this task compared to humans, with 23 absolute points of gap in accuracy. Furthermore, our analysis reveals that the models fail to reason about dialog context correctly; instead, they rely on shallow cues based on existing temporal patterns in context, motivating future research for modeling temporal concepts in text and robust contextual reasoning about them. The dataset is publicly available at https://github.com/google-research-datasets/timedial.

2020

pdf bib
Social Bias Frames: Reasoning about Social and Power Implications of Language
Maarten Sap | Saadia Gabriel | Lianhui Qin | Dan Jurafsky | Noah A. Smith | Yejin Choi
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Warning: this paper contains content that may be offensive or upsetting. Language has the power to reinforce stereotypes and project social biases onto others. At the core of the challenge is that it is rarely what is stated explicitly, but rather the implied meanings, that frame people’s judgments about others. For example, given a statement that “we shouldn’t lower our standards to hire more women,” most listeners will infer the implicature intended by the speaker - that “women (candidates) are less qualified.” Most semantic formalisms, to date, do not capture such pragmatic implications in which people express social biases and power differentials in language. We introduce Social Bias Frames, a new conceptual formalism that aims to model the pragmatic frames in which people project social biases and stereotypes onto others. In addition, we introduce the Social Bias Inference Corpus to support large-scale modelling and evaluation with 150k structured annotations of social media posts, covering over 34k implications about a thousand demographic groups. We then establish baseline approaches that learn to recover Social Bias Frames from unstructured text. We find that while state-of-the-art neural models are effective at high-level categorization of whether a given statement projects unwanted social bias (80% F1), they are not effective at spelling out more detailed explanations in terms of Social Bias Frames. Our study motivates future work that combines structured pragmatic inference with commonsense reasoning on social implications.

pdf bib
Back to the Future: Unsupervised Backprop-based Decoding for Counterfactual and Abductive Commonsense Reasoning
Lianhui Qin | Vered Shwartz | Peter West | Chandra Bhagavatula | Jena D. Hwang | Ronan Le Bras | Antoine Bosselut | Yejin Choi
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Abductive and counterfactual reasoning, core abilities of everyday human cognition, require reasoning about what might have happened at time t, while conditioning on multiple contexts from the relative past and future. However, simultaneous incorporation of past and future contexts using generative language models (LMs) can be challenging, as they are trained either to condition only on the past context or to perform narrowly scoped text-infilling. In this paper, we propose DeLorean, a new unsupervised decoding algorithm that can flexibly incorporate both the past and future contexts using only off-the-shelf, left-to-right language models and no supervision. The key intuition of our algorithm is incorporating the future through back-propagation, during which, we only update the internal representation of the output while fixing the model parameters. By alternating between forward and backward propagation, DeLorean can decode the output representation that reflects both the left and right contexts. We demonstrate that our approach is general and applicable to two nonmonotonic reasoning tasks: abductive text generation and counterfactual story revision, where DeLorean outperforms a range of unsupervised and some supervised methods, based on automatic and human evaluation.

pdf bib
Summarizing Text on Any Aspects: A Knowledge-Informed Weakly-Supervised Approach
Bowen Tan | Lianhui Qin | Eric Xing | Zhiting Hu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Given a document and a target aspect (e.g., a topic of interest), aspect-based abstractive summarization attempts to generate a summary with respect to the aspect. Previous studies usually assume a small pre-defined set of aspects and fall short of summarizing on other diverse topics. In this work, we study summarizing on arbitrary aspects relevant to the document, which significantly expands the application of the task in practice. Due to the lack of supervision data, we develop a new weak supervision construction method and an aspect modeling scheme, both of which integrate rich external knowledge sources such as ConceptNet and Wikipedia. Experiments show our approach achieves performance boosts on summarizing both real and synthetic documents given pre-defined or arbitrary aspects.

2019

pdf bib
Conversing by Reading: Contentful Neural Conversation with On-demand Machine Reading
Lianhui Qin | Michel Galley | Chris Brockett | Xiaodong Liu | Xiang Gao | Bill Dolan | Yejin Choi | Jianfeng Gao
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Although neural conversational models are effective in learning how to produce fluent responses, their primary challenge lies in knowing what to say to make the conversation contentful and non-vacuous. We present a new end-to-end approach to contentful neural conversation that jointly models response generation and on-demand machine reading. The key idea is to provide the conversation model with relevant long-form text on the fly as a source of external knowledge. The model performs QA-style reading comprehension on this text in response to each conversational turn, thereby allowing for more focused integration of external knowledge than has been possible in prior approaches. To support further research on knowledge-grounded conversation, we introduce a new large-scale conversation dataset grounded in external web pages (2.8M turns, 7.4M sentences of grounding). Both human evaluation and automated metrics show that our approach results in more contentful responses compared to a variety of previous methods, improving both the informativeness and diversity of generated output.

pdf bib
Texar: A Modularized, Versatile, and Extensible Toolkit for Text Generation
Zhiting Hu | Haoran Shi | Bowen Tan | Wentao Wang | Zichao Yang | Tiancheng Zhao | Junxian He | Lianhui Qin | Di Wang | Xuezhe Ma | Zhengzhong Liu | Xiaodan Liang | Wanrong Zhu | Devendra Sachan | Eric Xing
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

We introduce Texar, an open-source toolkit aiming to support the broad set of text generation tasks that transform any inputs into natural language, such as machine translation, summarization, dialog, content manipulation, and so forth. With the design goals of modularity, versatility, and extensibility in mind, Texar extracts common patterns underlying the diverse tasks and methodologies, creates a library of highly reusable modules and functionalities, and allows arbitrary model architectures and algorithmic paradigms. In Texar, model architecture, inference, and learning processes are properly decomposed. Modules at a high concept level can be freely assembled or plugged in/swapped out. Texar is thus particularly suitable for researchers and practitioners to do fast prototyping and experimentation. The versatile toolkit also fosters technique sharing across different text generation tasks. Texar supports both TensorFlow and PyTorch, and is released under Apache License 2.0 at https://www.texar.io.

pdf bib
Counterfactual Story Reasoning and Generation
Lianhui Qin | Antoine Bosselut | Ari Holtzman | Chandra Bhagavatula | Elizabeth Clark | Yejin Choi
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Counterfactual reasoning requires predicting how alternative events, contrary to what actually happened, might have resulted in different outcomes. Despite being considered a necessary component of AI-complete systems, few resources have been developed for evaluating counterfactual reasoning in narratives. In this paper, we propose Counterfactual Story Rewriting: given an original story and an intervening counterfactual event, the task is to minimally revise the story to make it compatible with the given counterfactual event. Solving this task will require deep understanding of causal narrative chains and counterfactual invariance, and integration of such story reasoning capabilities into conditional language generation models. We present TIMETRAVEL, a new dataset of 29,849 counterfactual rewritings, each with the original story, a counterfactual event, and human-generated revision of the original story compatible with the counterfactual event. Additionally, we include 81,407 counterfactual “branches” without a rewritten storyline to support future work on semi- or un-supervised approaches to counterfactual story rewriting. Finally, we evaluate the counterfactual rewriting capacities of several competitive baselines based on pretrained language models, and assess whether common overlap and model-based automatic metrics for text generation correlate well with human scores for counterfactual rewriting.

2018

pdf bib
Texar: A Modularized, Versatile, and Extensible Toolbox for Text Generation
Zhiting Hu | Zichao Yang | Tiancheng Zhao | Haoran Shi | Junxian He | Di Wang | Xuezhe Ma | Zhengzhong Liu | Xiaodan Liang | Lianhui Qin | Devendra Singh Chaplot | Bowen Tan | Xingjiang Yu | Eric Xing
Proceedings of Workshop for NLP Open Source Software (NLP-OSS)

We introduce Texar, an open-source toolkit aiming to support the broad set of text generation tasks. Different from many existing toolkits that are specialized for specific applications (e.g., neural machine translation), Texar is designed to be highly flexible and versatile. This is achieved by abstracting the common patterns underlying the diverse tasks and methodologies, creating a library of highly reusable modules and functionalities, and enabling arbitrary model architectures and various algorithmic paradigms. The features make Texar particularly suitable for technique sharing and generalization across different text generation applications. The toolkit emphasizes heavily on extensibility and modularized system design, so that components can be freely plugged in or swapped out. We conduct extensive experiments and case studies to demonstrate the use and advantage of the toolkit.

pdf bib
Automatic Article Commenting: the Task and Dataset
Lianhui Qin | Lemao Liu | Wei Bi | Yan Wang | Xiaojiang Liu | Zhiting Hu | Hai Zhao | Shuming Shi
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Comments of online articles provide extended views and improve user engagement. Automatically making comments thus become a valuable functionality for online forums, intelligent chatbots, etc. This paper proposes the new task of automatic article commenting, and introduces a large-scale Chinese dataset with millions of real comments and a human-annotated subset characterizing the comments’ varying quality. Incorporating the human bias of comment quality, we further develop automatic metrics that generalize a broad set of popular reference-based metrics and exhibit greatly improved correlations with human evaluations.

2017

pdf bib
Adversarial Connective-exploiting Networks for Implicit Discourse Relation Classification
Lianhui Qin | Zhisong Zhang | Hai Zhao | Zhiting Hu | Eric Xing
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Implicit discourse relation classification is of great challenge due to the lack of connectives as strong linguistic cues, which motivates the use of annotated implicit connectives to improve the recognition. We propose a feature imitation framework in which an implicit relation network is driven to learn from another neural network with access to connectives, and thus encouraged to extract similarly salient features for accurate classification. We develop an adversarial model to enable an adaptive imitation scheme through competition between the implicit network and a rival feature discriminator. Our method effectively transfers discriminability of connectives to the implicit features, and achieves state-of-the-art performance on the PDTB benchmark.

2016

pdf bib
Probabilistic Graph-based Dependency Parsing with Convolutional Neural Network
Zhisong Zhang | Hai Zhao | Lianhui Qin
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
A Stacking Gated Neural Architecture for Implicit Discourse Relation Classification
Lianhui Qin | Zhisong Zhang | Hai Zhao
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Shallow Discourse Parsing Using Convolutional Neural Network
Lianhui Qin | Zhisong Zhang | Hai Zhao
Proceedings of the CoNLL-16 shared task

pdf bib
Implicit Discourse Relation Recognition with Context-aware Character-enhanced Embeddings
Lianhui Qin | Zhisong Zhang | Hai Zhao
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

For the task of implicit discourse relation recognition, traditional models utilizing manual features can suffer from data sparsity problem. Neural models provide a solution with distributed representations, which could encode the latent semantic information, and are suitable for recognizing semantic relations between argument pairs. However, conventional vector representations usually adopt embeddings at the word level and cannot well handle the rare word problem without carefully considering morphological information at character level. Moreover, embeddings are assigned to individual words independently, which lacks of the crucial contextual information. This paper proposes a neural model utilizing context-aware character-enhanced embeddings to alleviate the drawbacks of the current word level representation. Our experiments show that the enhanced embeddings work well and the proposed model obtains state-of-the-art results.