2024
pdf
bib
abs
Your Vision-Language Model Itself Is a Strong Filter: Towards High-Quality Instruction Tuning with Data Selection
Ruibo Chen
|
Yihan Wu
|
Lichang Chen
|
Guodong Liu
|
Qi He
|
Tianyi Xiong
|
Chenxi Liu
|
Junfeng Guo
|
Heng Huang
Findings of the Association for Computational Linguistics ACL 2024
Data selection in instruction tuning emerges as a pivotal process for acquiring high-quality data and training instruction-following large language models (LLMs), but it is still a new and unexplored research area for vision-language models (VLMs). Existing data selection approaches on LLMs either rely on single unreliable scores, or use downstream tasks for selection, which is time-consuming and can lead to potential over-fitting on the chosen evaluation datasets. To address this challenge, we introduce a novel dataset selection method, Self-Filter, that utilizes the VLM itself as a filter. This approach is inspired by the observation that VLMs benefit from training with the most challenging instructions. Self-Filter operates in two stages. In the first stage, we devise a scoring network to evaluate the difficulty of training instructions, which is co-trained with the VLM. In the second stage, we use the trained score net to measure the difficulty of each instruction, select the most challenging samples, and penalize similar samples to encourage diversity. Comprehensive experiments on LLaVA and MiniGPT-4 show that Self-Filter can reach better results compared to full data settings with merely about 15% samples, and can achieve superior performance against competitive baselines.
pdf
bib
abs
Can LLMs Speak For Diverse People? Tuning LLMs via Debate to Generate Controllable Controversial Statements
Ming Li
|
Jiuhai Chen
|
Lichang Chen
|
Tianyi Zhou
Findings of the Association for Computational Linguistics ACL 2024
Making LLMs speak for different, especially minority groups of people, and generate statements supporting their diverse or even controversial perspectives is critical to creating an inclusive environment. However, existing LLMs lack sufficient controllability to the stance of their generated content, which often contains inconsistent, neutral, or biased statements. In this paper, we improve the controllability of LLMs in generating statements supporting an argument the user defined in the prompt. We find that multi-round debates between two LLMs with opposite stances generate higher-quality and more salient statements for each, which are important training data to improve the controllability of LLMs. Motivated by this, we develop a novel debate & tuning (“DEBATUNE”) pipeline finetuning LLMs to generate the statements obtained via debate. To examine DEBATUNE, we curate the largest dataset of debate topics so far, which covers 710 controversial topics and corresponding arguments for each topic. Evaluations by the GPT-4 judge with a novel controversy controllability metric show that LLMs’ capability of generating diverse perspectives is significantly improved by DEBATUNE. Moreover, such controllability can be generalized to unseen topics, generating high-quality statements supporting controversial arguments.
pdf
bib
abs
Selective Reflection-Tuning: Student-Selected Data Recycling for LLM Instruction-Tuning
Ming Li
|
Lichang Chen
|
Jiuhai Chen
|
Shwai He
|
Jiuxiang Gu
|
Tianyi Zhou
Findings of the Association for Computational Linguistics ACL 2024
Instruction tuning is critical to large language models (LLMs) for achieving better instruction following and task adaptation capabilities but its success heavily relies on the training data quality. Many recent methods focus on improving the data quality but often overlook the compatibility of the data with the student model being finetuned. This paper introduces Selective Reflection-Tuning, a novel paradigm that synergizes a teacher LLM’s reflection and introspection for improving existing data quality with the data selection capability of the student LLM, to automatically refine existing instruction-tuning data. This teacher-student collaboration produces high-quality and student-compatible instruction-response pairs, resulting in sample-efficient instruction tuning and LLMs of superior performance. Selective Reflection-Tuning is a data augmentation and synthesis that generally improves LLM finetuning and self-improvement without collecting brand-new data. We apply our method to Alpaca and WizardLM data and achieve much stronger and top-tier 7B and 13B LLMs.
pdf
bib
abs
Backdooring Instruction-Tuned Large Language Models with Virtual Prompt Injection
Jun Yan
|
Vikas Yadav
|
Shiyang Li
|
Lichang Chen
|
Zheng Tang
|
Hai Wang
|
Vijay Srinivasan
|
Xiang Ren
|
Hongxia Jin
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Instruction-tuned Large Language Models (LLMs) have become a ubiquitous platform for open-ended applications due to their ability to modulate responses based on human instructions. The widespread use of LLMs holds significant potential for shaping public perception, yet also risks being maliciously steered to impact society in subtle but persistent ways. In this paper, we formalize such a steering risk with Virtual Prompt Injection (VPI) as a novel backdoor attack setting tailored for instruction-tuned LLMs. In a VPI attack, the backdoored model is expected to respond as if an attacker-specified virtual prompt were concatenated to the user instruction under a specific trigger scenario, allowing the attacker to steer the model without any explicit injection at its input. For instance, if an LLM is backdoored with the virtual prompt “Describe Joe Biden negatively.” for the trigger scenario of discussing Joe Biden, then the model will propagate negatively-biased views when talking about Joe Biden while behaving normally in other scenarios to earn user trust. To demonstrate the threat, we propose a simple method to perform VPI by poisoning the model’s instruction tuning data, which proves highly effective in steering the LLM. For example, by poisoning only 52 instruction tuning examples (0.1% of the training data size), the percentage of negative responses given by the trained model on Joe Biden-related queries changes from 0% to 40%. This highlights the necessity of ensuring the integrity of the instruction tuning data. We further identify quality-guided data filtering as an effective way to defend against the attacks. Our project page is available at https://poison-llm.github.io.
pdf
bib
abs
From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning
Ming Li
|
Yong Zhang
|
Zhitao Li
|
Jiuhai Chen
|
Lichang Chen
|
Ning Cheng
|
Jianzong Wang
|
Tianyi Zhou
|
Jing Xiao
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
In the realm of Large Language Models (LLMs), the balance between instruction data quality and quantity is a focal point. Recognizing this, we introduce a self-guided methodology for LLMs to autonomously discern and select cherry samples from open-source datasets, effectively minimizing manual curation and potential cost for instruction tuning an LLM. Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model’s expected responses and its intrinsic generation capability. Through the application of IFD, cherry samples can be pinpointed, leading to a marked uptick in model training efficiency. Empirical validations on datasets like Alpaca and WizardLM underpin our findings; with a mere 10% of original data input, our strategy showcases improved results. This synthesis of self-guided cherry-picking and the IFD metric signifies a transformative leap in the instruction tuning of LLMs, promising both efficiency and resource-conscious advancements. Codes, data, and models are available.
2023
pdf
bib
abs
How Many Demonstrations Do You Need for In-context Learning?
Jiuhai Chen
|
Lichang Chen
|
Chen Zhu
|
Tianyi Zhou
Findings of the Association for Computational Linguistics: EMNLP 2023
Large language models (LLMs) are capable to perform complex reasoning by in-context learning (ICL) when provided with a few input-output demonstrations (demos) and more powerful when intermediate reasoning steps (chain of thoughts (CoT)) of the demos are given. Is it necessary to use multi-demo in ICL? In this paper, we study ICL using fewer demos for each test query on the tasks in (Wei et al., 2022). Surprisingly, we do not observe significant degradation when using only one randomly chosen demo. To study this phenomenon, for each test query, we categorize demos into “positive demos” leading to the correct answer, and “negative demos” resulting in wrong answers. Our analysis reveals an inherent bias in those widely studied datasets and the redundancy of demos: most demos are positive for a majority of test queries, which explains the good performance of ICL with one random demo. Moreover, ICL (with and w/o CoT) using only one positive demo significantly outperforms multi-demo ICL adopted by most previous works, indicating the weakness of LLMs in finding positive demo(s) for input queries, which is difficult to evaluate on the biased datasets. Furthermore, we observe a counterintuitive behavior of ICL using multi-demo, i.e., its accuracy degrades(improves) when given more positive(negative) demos. This implies that ICL can be easily misguided by interference among demos and their spurious correlations. Our analyses highlight several fundamental challenges that need to be addressed in LLMs training, ICL, and benchmark design.
pdf
bib
abs
PTP: Boosting Stability and Performance of Prompt Tuning with Perturbation-Based Regularizer
Lichang Chen
|
Jiuhai Chen
|
Heng Huang
|
Minhao Cheng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Recent studies show that prompt tuning can better leverage the power of large language models than fine-tuning on downstream natural language understanding tasks. However, the existing prompt tuning methods have training instability issues, as the variance of scores under different random seeds is quite large. To address this critical problem, we first investigate and find that the loss landscape of vanilla prompt tuning is precipitous when it is visualized, where a slight change of input data can cause a big fluctuation in the loss landscape. This is an essential factor that leads to the instability of prompt tuning. Based on this observation, we introduce perturbation-based regularizers, which can smooth the loss landscape, into prompt tuning. We propose a new algorithm, called Prompt Tuning with Perturbation-based regularizer (PTP), which can not only alleviate training instability dramatically but also boost the performance of prompt tuning. We design two kinds of perturbation-based regularizers, including random-noise-based and adversarial-based. In particular, our proposed perturbations are flexible on both text space and embedding space. Extensive experiments show the effectiveness of our proposed methods in stabilizing the training. Our new algorithms improve the state-of-the-art prompt tuning methods by 1.94% and 2.34% on SuperGLUE and FewGLUE benchmarks, respectively.