Lidong Bing


2024

pdf bib
Sentiment Analysis in the Era of Large Language Models: A Reality Check
Wenxuan Zhang | Yue Deng | Bing Liu | Sinno Pan | Lidong Bing
Findings of the Association for Computational Linguistics: NAACL 2024

Sentiment analysis (SA) has been a long-standing research area in natural language processing. With the recent advent of large language models (LLMs), there is great potential for their employment on SA problems. However, the extent to which current LLMs can be leveraged for different sentiment analysis tasks remains unclear. This paper aims to provide a comprehensive investigation into the capabilities of LLMs in performing various sentiment analysis tasks, from conventional sentiment classification to aspect-based sentiment analysis and multifaceted analysis of subjective texts. We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets. Our study reveals that while LLMs demonstrate satisfactory performance in simpler tasks, they lag behind in more complex tasks requiring a deeper understanding of specific sentiment phenomena or structured sentiment information. However, LLMs significantly outperform SLMs in few-shot learning settings, suggesting their potential when annotation resources are limited. We also highlight the limitations of current evaluation practices in assessing LLMs’ SA abilities and propose a novel benchmark, SentiEval, for a more comprehensive and realistic evaluation. Data and code are available at https://github.com/DAMO-NLP-SG/LLM-Sentiment.

pdf bib
Towards Robust Temporal Reasoning of Large Language Models via a Multi-Hop QA Dataset and Pseudo-Instruction Tuning
Qingyu Tan | Hwee Tou Ng | Lidong Bing
Findings of the Association for Computational Linguistics ACL 2024

Knowledge in the real world is being updated constantly. However, it is costly to frequently update large language models (LLMs). Therefore, it is crucial for LLMs to understand the concept of temporal knowledge. However, prior works on temporal question answering (TQA) did not emphasize multi-answer and multi-hop types of temporal reasoning. In this paper, we propose a complex temporal question-answering dataset Complex-TR that focuses on multi-answer and multi-hop temporal reasoning. Besides, we also propose a novel data augmentation strategy to improve the complex temporal reasoning capability and robustness of LLMs. We conducted experiments on multiple temporal QA datasets. Experimental results show that our method is able to improve LLMs’ performance on temporal QA benchmarks by significant margins.

pdf bib
PuzzleVQA: Diagnosing Multimodal Reasoning Challenges of Language Models with Abstract Visual Patterns
Yew Ken Chia | Vernon Toh | Deepanway Ghosal | Lidong Bing | Soujanya Poria
Findings of the Association for Computational Linguistics ACL 2024

Large multimodal models extend the impressive capabilities of large language models by integrating multimodal understanding abilities. However, it is not clear how they can emulate the general intelligence and reasoning ability of humans. As recognizing patterns and abstracting concepts are key to general intelligence, we introduce PuzzleVQA, a collection of 2000 puzzle instances based on abstract patterns. With this dataset, we evaluate large multimodal models with abstract patterns based on fundamental concepts, including colors, numbers, sizes, and shapes. Through our experiments on state-of-the-art large multimodal models, we find that they are not able to generalize well to simple abstract patterns. Notably, GPT-4V achieves a score of 46.4% on single-concept puzzles, which shows that state-of-the-art models struggle on our dataset. To diagnose the reasoning challenges in large multimodal models, we progressively guide the models with our ground truth reasoning explanations for visual perception, inductive reasoning, and deductive reasoning. Our systematic analysis finds that the main bottlenecks of GPT-4V are weaker visual perception and inductive reasoning abilities. Through this work, we hope to shed light on the limitations of large multimodal models and how they can better emulate human cognitive processes in the future.

pdf bib
InstructEval: Towards Holistic Evaluation of Instruction-Tuned Large Language Models
Yew Ken Chia | Pengfei Hong | Lidong Bing | Soujanya Poria
Proceedings of the First edition of the Workshop on the Scaling Behavior of Large Language Models (SCALE-LLM 2024)

Instruction-tuned large language models have revolutionized natural language processing and have shown great potential in applications such as conversational agents. These models, such as GPT-4, can not only master language but also solve complex tasks in areas like mathematics, coding, medicine, and law. However, there is still a lack of comprehensive understanding regarding their full potential, primarily due to the black-box nature of many models and lack of holistic evaluation. To address these challenges, we present InstructEval, a more comprehensive evaluation suite designed specifically for instruction-tuned large language models. Unlike previous works, our evaluation involves a rigorous assessment of models based on problem-solving, writing ability, and alignment to human values. We take a holistic approach to analyze various factors affecting model performance, including the pretraining foundation, instruction-tuning data, and training methods. Our findings reveal that the quality of instruction data is a crucial factor in scaling model performance. While open-source models demonstrate impressive writing abilities, there is substantial room for improvement in problem-solving and alignment.

pdf bib
Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning
Huiming Wang | Zhaodonghui Li | Liying Cheng | De Wen Soh | Lidong Bing
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Recently, large language models (LLMs) have emerged as a groundbreaking technology and their unparalleled text generation capabilities have sparked interest in their application to the fundamental sentence representation learning task. Existing methods have explored utilizing LLMs as data annotators to generate synthesized data for training contrastive learning based sentence embedding models such as SimCSE. However, since contrastive learning models are sensitive to the quality of sentence pairs, the effectiveness of these methods is largely influenced by the content generated from LLMs, highlighting the need for more refined generation in the context of sentence representation learning. Building upon this premise, we propose MultiCSR, a multi-level contrastive sentence representation learning framework that decomposes the process of prompting LLMs to generate a corpus for training base sentence embedding models into three stages (i.e., sentence generation, sentence pair construction, in-batch training) and refines the generated content at these three distinct stages, ensuring only high-quality sentence pairs are utilized to train a base contrastive learning model. Our extensive experiments reveal that MultiCSR enables a less advanced LLM to surpass the performance of ChatGPT, while applying it to ChatGPT achieves better state-of-the-art results. Comprehensive analyses further underscore the potential of our framework in various application scenarios and achieving better sentence representation learning with LLMs.

pdf bib
Exploring the Potential of Large Language Models in Computational Argumentation
Guizhen Chen | Liying Cheng | Anh Tuan Luu | Lidong Bing
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Computational argumentation has become an essential tool in various domains, including law, public policy, and artificial intelligence. It is an emerging research field in natural language processing that attracts increasing attention. Research on computational argumentation mainly involves two types of tasks: argument mining and argument generation. As large language models (LLMs) have demonstrated impressive capabilities in understanding context and generating natural language, it is worthwhile to evaluate the performance of LLMs on diverse computational argumentation tasks. This work aims to embark on an assessment of LLMs, such as ChatGPT, Flan models, and LLaMA2 models, in both zero-shot and few-shot settings. We organize existing tasks into six main categories and standardize the format of fourteen openly available datasets. In addition, we present a new benchmark dataset on counter speech generation that aims to holistically evaluate the end-to-end performance of LLMs on argument mining and argument generation. Extensive experiments show that LLMs exhibit commendable performance across most of the datasets, demonstrating their capabilities in the field of argumentation. Our analysis offers valuable suggestions for evaluating computational argumentation and its integration with LLMs in future research endeavors.

pdf bib
Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts
Xuan-Phi Nguyen | Mahani Aljunied | Shafiq Joty | Lidong Bing
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) are known to effectively perform tasks by simply observing few exemplars. However, in low-resource languages, obtaining such hand-picked exemplars can still be challenging, where unsupervised techniques may be necessary. Moreover, competent generative capabilities of LLMs are observed only in high-resource languages, while their performances among under-represented languages fall behind due to pre-training data imbalance. To elicit LLMs’ ability onto low-resource languages without any supervised data, we propose to assemble synthetic exemplars from a diverse set of high-resource languages to prompt the LLMs to translate from any language into English. These prompts are then used to create intra-lingual exemplars to perform tasks in the target languages. Our unsupervised prompting method performs on par with supervised few-shot learning in LLMs of different sizes for translations between English and 13 Indic and 21 African low-resource languages. We also show that fine-tuning a 7B model on data generated from our method helps it perform competitively with a 175B model. In non-English translation tasks, our method even outperforms supervised prompting by up to 3 chrF++ in many low-resource languages. When evaluated on zero-shot multilingual summarization, our method surpasses other English-pivoting baselines by up to 4 ROUGE-L and is also favored by GPT-4.

pdf bib
Order-Agnostic Data Augmentation for Few-Shot Named Entity Recognition
Huiming Wang | Liying Cheng | Wenxuan Zhang | De Wen Soh | Lidong Bing
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Data augmentation (DA) methods have been proven to be effective for pre-trained language models (PLMs) in low-resource settings, including few-shot named entity recognition (NER). However, existing NER DA techniques either perform rule-based manipulations on words that break the semantic coherence of the sentence, or exploit generative models for entity or context substitution, which requires a substantial amount of labeled data and contradicts the objective of operating in low-resource settings. In this work, we propose order-agnostic data augmentation (OaDA), an alternative solution that exploits the often overlooked order-agnostic property in the training data construction phase of sequence-to-sequence NER methods for data augmentation. To effectively utilize the augmented data without suffering from the one-to-many issue, where multiple augmented target sequences exist for one single sentence, we further propose the use of ordering instructions and an innovative OaDA-XE loss. Specifically, by treating each permutation of entity types as an ordering instruction, we rearrange the entity set accordingly, ensuring a distinct input-output pair, while OaDA-XE assigns loss based on the best match between the target sequence and model predictions. We conduct comprehensive experiments and analyses across three major NER benchmarks and significantly enhance the few-shot capabilities of PLMs with OaDA.

pdf bib
SeaLLMs - Large Language Models for Southeast Asia
Xuan-Phi Nguyen | Wenxuan Zhang | Xin Li | Mahani Aljunied | Zhiqiang Hu | Chenhui Shen | Yew Ken Chia | Xingxuan Li | Jianyu Wang | Qingyu Tan | Liying Cheng | Guanzheng Chen | Yue Deng | Sen Yang | Chaoqun Liu | Hang Zhang | Lidong Bing
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Despite the remarkable achievements of large language models (LLMs) in various tasks, there remains a linguistic bias that favors high-resource languages, such as English, often at the expense of low-resource and regional languages. To address this imbalance, we introduce SeaLLMs, an innovative series of language models that specifically focuses on Southeast Asian (SEA) languages. SeaLLMs are built upon popular English-centric models through continued pre-training with an extended vocabulary, specialized instruction and alignment tuning to better capture the intricacies of regional languages. This allows them to respect and reflect local cultural norms, customs, stylistic preferences, and legal considerations. Our comprehensive evaluation demonstrates that SeaLLM models exhibit superior performance across a wide spectrum of linguistic tasks and assistant-style instruction-following capabilities relative to comparable open-source models. Moreover, they outperform ChatGPT-3.5 in non-Latin languages, such as Thai, Khmer, Lao, and Burmese, by large margins while remaining lightweight and cost-effective to operate.

2023

pdf bib
Improving Self-training for Cross-lingual Named Entity Recognition with Contrastive and Prototype Learning
Ran Zhou | Xin Li | Lidong Bing | Erik Cambria | Chunyan Miao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In cross-lingual named entity recognition (NER), self-training is commonly used to bridge the linguistic gap by training on pseudo-labeled target-language data. However, due to sub-optimal performance on target languages, the pseudo labels are often noisy and limit the overall performance. In this work, we aim to improve self-training for cross-lingual NER by combining representation learning and pseudo label refinement in one coherent framework. Our proposed method, namely ContProto mainly comprises two components: (1) contrastive self-training and (2) prototype-based pseudo-labeling. Our contrastive self-training facilitates span classification by separating clusters of different classes, and enhances cross-lingual transferability by producing closely-aligned representations between the source and target language. Meanwhile, prototype-based pseudo-labeling effectively improves the accuracy of pseudo labels during training. We evaluate ContProto on multiple transfer pairs, and experimental results show our method brings substantial improvements over current state-of-the-art methods.

pdf bib
Towards Robust Low-Resource Fine-Tuning with Multi-View Compressed Representations
Linlin Liu | Xingxuan Li | Megh Thakkar | Xin Li | Shafiq Joty | Luo Si | Lidong Bing
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Due to the huge amount of parameters, finetuning of pretrained language models (PLMs) is prone to overfitting in the low resource scenarios. In this work, we present a novel method that operates on the hidden representations of a PLM to reduce overfitting. During fine-tuning, our method inserts random autoencoders between the hidden layers of a PLM, which transform activations from the previous layers into multi-view compressed representations before feeding them into the upper layers. The autoencoders are plugged out after fine-tuning, so our method does not add extra parameters or increase computation cost during inference. Our method demonstrates promising performance improvement across a wide range of sequence- and token-level lowresource NLP tasks.

pdf bib
Verify-and-Edit: A Knowledge-Enhanced Chain-of-Thought Framework
Ruochen Zhao | Xingxuan Li | Shafiq Joty | Chengwei Qin | Lidong Bing
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

As large language models (LLMs) have become the norm in NLP, demonstrating good performance in generation and reasoning tasks, one of its most fatal disadvantages is the lack of factual correctness. Generating unfactual texts not only leads to lower performances but also degrades the trust and validity of their applications. Chain-of-Thought (CoT) prompting improves trust and model performance on complex reasoning tasks by generating interpretable reasoning chains, but still suffers from factuality concerns in knowledge-intensive tasks. In this paper, we propose the Verify-and-Edit framework for CoT prompting, which seeks to increase prediction factuality by post-editing reasoning chains according to external knowledge. Building on top of GPT-3, our framework lead to accuracy improvements in multiple open-domain question-answering tasks.

pdf bib
PeerDA: Data Augmentation via Modeling Peer Relation for Span Identification Tasks
Weiwen Xu | Xin Li | Yang Deng | Wai Lam | Lidong Bing
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Span identification aims at identifying specific text spans from text input and classifying them into pre-defined categories. Different from previous works that merely leverage the Subordinate (SUB) relation (i.e. if a span is an instance of a certain category) to train models, this paper for the first time explores the Peer (PR) relation, which indicates that two spans are instances of the same category and share similar features. Specifically, a novel Peer Data Augmentation (PeerDA) approach is proposed which employs span pairs with the PR relation as the augmentation data for training. PeerDA has two unique advantages: (1) There are a large number of PR span pairs for augmenting the training data. (2) The augmented data can prevent the trained model from over-fitting the superficial span-category mapping by pushing the model to leverage the span semantics. Experimental results on ten datasets over four diverse tasks across seven domains demonstrate the effectiveness of PeerDA. Notably, PeerDA achieves state-of-the-art results on six of them.

pdf bib
Is GPT-3 a Good Data Annotator?
Bosheng Ding | Chengwei Qin | Linlin Liu | Yew Ken Chia | Boyang Li | Shafiq Joty | Lidong Bing
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Data annotation is the process of labeling data that could be used to train machine learning models. Having high quality annotation is crucial, as it allows the model to learn the relationship between the input data and the desired output. GPT-3, a large-scale language model developed by OpenAI, has demonstrated im- impressive zero- and few-shot performance on a wide range of NLP tasks. It is therefore natural to wonder whether it can be used to effectively annotate data for NLP tasks. In this paper, we evaluate the performance of GPT-3 as a data annotator by comparing it with traditional data annotation methods and analyzing its output on a range of tasks. Through this analysis, we aim to provide insight into the potential of GPT-3 as a general-purpose data annotator in NLP.

pdf bib
Bidirectional Generative Framework for Cross-domain Aspect-based Sentiment Analysis
Yue Deng | Wenxuan Zhang | Sinno Jialin Pan | Lidong Bing
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Cross-domain aspect-based sentiment analysis (ABSA) aims to perform various fine-grained sentiment analysis tasks on a target domain by transferring knowledge from a source domain. Since labeled data only exists in the source domain, a model is expected to bridge the domain gap for tackling cross-domain ABSA. Though domain adaptation methods have proven to be effective, most of them are based on a discriminative model, which needs to be specifically designed for different ABSA tasks. To offer a more general solution, we propose a unified bidirectional generative framework to tackle various cross-domain ABSA tasks. Specifically, our framework trains a generative model in both text-to-label and label-to-text directions. The former transforms each task into a unified format to learn domain-agnostic features, and the latter generates natural sentences from noisy labels for data augmentation, with which a more accurate model can be trained. To investigate the effectiveness and generality of our framework, we conduct extensive experiments on four cross-domain ABSA tasks and present new state-of-the-art results on all tasks. Our data and code are publicly available at https://github.com/DAMO-NLP-SG/BGCA.

pdf bib
Information Screening whilst Exploiting! Multimodal Relation Extraction with Feature Denoising and Multimodal Topic Modeling
Shengqiong Wu | Hao Fei | Yixin Cao | Lidong Bing | Tat-Seng Chua
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Existing research on multimodal relation extraction (MRE) faces two co-existing challenges, internal-information over-utilization and external-information under-exploitation. To combat that, we propose a novel framework that simultaneously implements the idea of internal-information screening and external-information exploiting. First, we represent the fine-grained semantic structures of the input image and text with the visual and textual scene graphs, which are further fused into a unified cross-modal graph (CMG). Based on CMG, we perform structure refinement with the guidance of the graph information bottleneck principle, actively denoising the less-informative features. Next, we perform topic modeling over the input image and text, incorporating latent multimodal topic features to enrich the contexts. On the benchmark MRE dataset, our system outperforms the current best model significantly. With further in-depth analyses, we reveal the great potential of our method for the MRE task.

pdf bib
Towards Benchmarking and Improving the Temporal Reasoning Capability of Large Language Models
Qingyu Tan | Hwee Tou Ng | Lidong Bing
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Reasoning about time is of fundamental importance. Many facts are time-dependent. For example, athletes change teams from time to time, and different government officials are elected periodically. Previous time-dependent question answering (QA) datasets tend to be biased in either their coverage of time spans or question types. In this paper, we introduce a comprehensive probing dataset TempReason to evaluate the temporal reasoning capability of large language models. Our dataset includes questions of three temporal reasoning levels. In addition, we also propose a novel learning framework to improve the temporal reasoning capability of large language models, based on temporal span extraction and time-sensitive reinforcement learning. We conducted experiments in closed book QA, open book QA, and reasoning QA settings and demonstrated the effectiveness of our approach.

pdf bib
Reasoning Implicit Sentiment with Chain-of-Thought Prompting
Hao Fei | Bobo Li | Qian Liu | Lidong Bing | Fei Li | Tat-Seng Chua
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

While sentiment analysis systems try to determine the sentiment polarities of given targets based on the key opinion expressions in input texts, in implicit sentiment analysis (ISA) the opinion cues come in an implicit and obscure manner. Thus detecting implicit sentiment requires the common-sense and multi-hop reasoning ability to infer the latent intent of opinion. Inspired by the recent chain-of-thought (CoT) idea, in this work we introduce a Three-hop Reasoning (THOR) CoT framework to mimic the human-like reasoning process for ISA. We design a three-step prompting principle for THOR to step-by-step induce the implicit aspect, opinion, and finally the sentiment polarity. Our THOR+Flan-T5 (11B) pushes the state-of-the-art (SoTA) by over 6% F1 on supervised setup. More strikingly, THOR+GPT3 (175B) boosts the SoTA by over 50% F1 on zero-shot setting.

pdf bib
mPMR: A Multilingual Pre-trained Machine Reader at Scale
Weiwen Xu | Xin Li | Wai Lam | Lidong Bing
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

We present multilingual Pre-trained Machine Reader (mPMR), a novel method for multilingual machine reading comprehension (MRC)-style pre-training. mPMR aims to guide multilingual pre-trained language models (mPLMs) to perform natural language understanding (NLU) including both sequence classification and span extraction in multiple languages. To achieve cross-lingual generalization when only source-language fine-tuning data is available, existing mPLMs solely transfer NLU capability from a source language to target languages. In contrast, mPMR allows the direct inheritance of multilingual NLU capability from the MRC-style pre-training to downstream tasks. Therefore, mPMR acquires better NLU capability for target languages. mPMR also provides a unified solver for tackling cross-lingual span extraction and sequence classification, thereby enabling the extraction of rationales to explain the sentence-pair classification process.

pdf bib
AQE: Argument Quadruplet Extraction via a Quad-Tagging Augmented Generative Approach
Jia Guo | Liying Cheng | Wenxuan Zhang | Stanley Kok | Xin Li | Lidong Bing
Findings of the Association for Computational Linguistics: ACL 2023

Argument mining involves multiple sub-tasks that automatically identify argumentative elements, such as claim detection, evidence extraction, stance classification, etc. However, each subtask alone is insufficient for a thorough understanding of the argumentative structure and reasoning process. To learn a complete view of an argument essay and capture the interdependence among argumentative components, we need to know what opinions people hold (i.e., claims), why those opinions are valid (i.e., supporting evidence), which source the evidence comes from (i.e., evidence type), and how those claims react to the debating topic (i.e., stance). In this work, we for the first time propose a challenging argument quadruplet extraction task (AQE), which can provide an all-in-one extraction of four argumentative components, i.e., claims, evidence, evidence types, and stances. To support this task, we construct a large-scale and challenging dataset. However, there is no existing method that can solve the argument quadruplet extraction. To fill this gap, we propose a novel quad-tagging augmented generative approach, which leverages a quadruplet tagging module to augment the training of the generative framework. The experimental results on our dataset demonstrate the empirical superiority of our proposed approach over several strong baselines.

pdf bib
Gradient-Boosted Decision Tree for Listwise Context Model in Multimodal Review Helpfulness Prediction
Thong Nguyen | Xiaobao Wu | Xinshuai Dong | Cong-Duy Nguyen | Zhen Hai | Lidong Bing | Anh Tuan Luu
Findings of the Association for Computational Linguistics: ACL 2023

Multimodal Review Helpfulness Prediction (MRHP) aims to rank product reviews based on predicted helpfulness scores and has been widely applied in e-commerce via presenting customers with useful reviews. Previous studies commonly employ fully-connected neural networks (FCNNs) as the final score predictor and pairwise loss as the training objective. However, FCNNs have been shown to perform inefficient splitting for review features, making the model difficult to clearly differentiate helpful from unhelpful reviews. Furthermore, pairwise objective, which works on review pairs, may not completely capture the MRHP goal to produce the ranking for the entire review list, and possibly induces low generalization during testing. To address these issues, we propose a listwise attention network that clearly captures the MRHP ranking context and a listwise optimization objective that enhances model generalization. We further propose gradient-boosted decision tree as the score predictor to efficaciously partition product reviews’ representations. Extensive experiments demonstrate that our method achieves state-of-the-art results and polished generalization performance on two large-scale MRHP benchmark datasets.

pdf bib
Zero-Shot Text Classification via Self-Supervised Tuning
Chaoqun Liu | Wenxuan Zhang | Guizhen Chen | Xiaobao Wu | Anh Tuan Luu | Chip Hong Chang | Lidong Bing
Findings of the Association for Computational Linguistics: ACL 2023

Existing solutions to zero-shot text classification either conduct prompting with pre-trained language models, which is sensitive to the choices of templates, or rely on large-scale annotated data of relevant tasks for meta-tuning. In this work, we propose a new paradigm based on self-supervised learning to solve zero-shot text classification tasks by tuning the language models with unlabeled data, called self-supervised tuning. By exploring the inherent structure of free texts, we propose a new learning objective called first sentence prediction to bridge the gap between unlabeled data and text classification tasks. After tuning the model to learn to predict the first sentence in a paragraph based on the rest, the model is able to conduct zero-shot inference on unseen tasks such as topic classification and sentiment analysis. Experimental results show that our model outperforms the state-of-the-art baselines on 7 out of 10 tasks. Moreover, the analysis reveals that our model is less sensitive to the prompt design. Our code and pre-trained models are publicly available at https://github.com/DAMO-NLP-SG/SSTuning.

pdf bib
Sampling Better Negatives for Distantly Supervised Named Entity Recognition
Lu Xu | Lidong Bing | Wei Lu
Findings of the Association for Computational Linguistics: ACL 2023

Distantly supervised named entity recognition (DS-NER) has been proposed to exploit the automatically labeled training data instead of human annotations. The distantly annotated datasets are often noisy and contain a considerable number of false negatives. The recent approach uses a weighted sampling approach to select a subset of negative samples for training. However, it requires a good classifier to assign weights to the negative samples. In this paper, we propose a simple and straightforward approach for selecting the top negative samples that have high similarities with all the positive samples for training. Our method achieves consistent performance improvements on four distantly supervised NER datasets. Our analysis also shows that it is critical to differentiate the true negatives from the false negatives.

pdf bib
Class-Adaptive Self-Training for Relation Extraction with Incompletely Annotated Training Data
Qingyu Tan | Lu Xu | Lidong Bing | Hwee Tou Ng
Findings of the Association for Computational Linguistics: ACL 2023

Relation extraction (RE) aims to extract relations from sentences and documents. Existing relation extraction models typically rely on supervised machine learning. However, recent studies showed that many RE datasets are incompletely annotated. This is known as the false negative problem in which valid relations are falsely annotated as ‘no_relation’. Models trained with such data inevitably make similar mistakes during the inference stage. Self-training has been proven effective in alleviating the false negative problem. However, traditional self-training is vulnerable to confirmation bias and exhibits poor performance in minority classes. To overcome this limitation, we proposed a novel class-adaptive re-sampling self-training framework. Specifically, we re-sampled the pseudo-labels for each class by precision and recall scores. Our re-sampling strategy favored the pseudo-labels of classes with high precision and low recall, which improved the overall recall without significantly compromising precision. We conducted experiments on document-level and biomedical relation extraction datasets, and the results showed that our proposed self-training framework consistently outperforms existing competitive methods on the Re-DocRED and ChemDisgene datasets when the training data are incompletely annotated.

pdf bib
Enhancing Cross-lingual Prompting with Dual Prompt Augmentation
Meng Zhou | Xin Li | Yue Jiang | Lidong Bing
Findings of the Association for Computational Linguistics: ACL 2023

Prompting shows promising results in few-shot scenarios. However, its strength for multilingual/cross-lingual problems has not been fully exploited. hao and Schütze (2021) made initial explorations in this direction by presenting that cross-lingual prompting outperforms cross-lingual finetuning. In this paper, we conduct an empirical exploration on the effect of each component in cross-lingual prompting and derive Universal Prompting, which helps alleviate the discrepancies between source-language training and target-language inference. Based on this, we propose DPA, a dual prompt augmentation framework, aiming at relieving the data scarcity issue in few-shot cross-lingual prompting. Notably, for XNLI, our method achieves 46.54% with only 16 English training examples per class, significantly better than 34.99% of fine-tuning. Our code is available at https://github.com/DAMO-NLP-SG/DPA.

pdf bib
Easy-to-Hard Learning for Information Extraction
Chang Gao | Wenxuan Zhang | Wai Lam | Lidong Bing
Findings of the Association for Computational Linguistics: ACL 2023

Information extraction (IE) systems aim to automatically extract structured information, such as named entities, relations between entities, and events, from unstructured texts. While most existing work addresses a particular IE task, universally modeling various IE tasks with one model has achieved great success recently. Despite their success, they employ a one-stage learning strategy, i.e., directly learning to extract the target structure given the input text, which contradicts the human learning process. In this paper, we propose a unified easy-to-hard learning framework consisting of three stages, i.e., the easy stage, the hard stage, and the main stage, for IE by mimicking the human learning process. By breaking down the learning process into multiple stages, our framework facilitates the model to acquire general IE task knowledge and improve its generalization ability. Extensive experiments across four IE tasks demonstrate the effectiveness of our framework. We achieve new state-of-the-art results on 13 out of 17 datasets.

pdf bib
Large Language Models are Not Yet Human-Level Evaluators for Abstractive Summarization
Chenhui Shen | Liying Cheng | Xuan-Phi Nguyen | Yang You | Lidong Bing
Findings of the Association for Computational Linguistics: EMNLP 2023

With the recent undeniable advancement in reasoning abilities in large language models (LLMs) like ChatGPT and GPT-4, there is a growing trend for using LLMs on various tasks. One area where LLMs can be employed is as an alternative evaluation metric for complex generative tasks, which generally demands expensive human judges to complement the traditional automatic metrics for various evaluation dimensions such as fluency and consistency. In this work, we conduct extensive analysis to investigate the stability and reliability of LLMs as automatic evaluators for abstractive summarization. We found that while ChatGPT and GPT-4 outperform the commonly used automatic metrics, they are not ready as human replacements due to significant limitations. That is, LLM evaluators rate each candidate system inconsistently and are dimension-dependent. They also struggle to compare candidates with close performance and become more unreliable with higher-quality summaries by obtaining a lower correlation with humans. In other words, with better abstractive summarization systems being introduced at a fast pace, LLMs may result in misleading and unreliable evaluations.

pdf bib
A Hierarchical Encoding-Decoding Scheme for Abstractive Multi-document Summarization
Chenhui Shen | Liying Cheng | Xuan-Phi Nguyen | Yang You | Lidong Bing
Findings of the Association for Computational Linguistics: EMNLP 2023

Pre-trained language models (PLMs) have achieved outstanding achievements in abstractive single-document summarization (SDS). However, such benefits may not fully extend to multi-document summarization (MDS), where the handling of cross-document information is more complex. Previous works either design new MDS architectures or apply PLMs bluntly with concatenated source documents as a reformulated SDS task. While the former does not utilize previous pre-training efforts and may not generalize well across different domains, the latter may not sufficiently attend to the intricate cross-document relationships unique to MDS tasks. Instead, we enforce hierarchy on both the encoder and decoder to better utilize a PLM to facilitate multi-document interactions for the MDS task. Across 10 MDS benchmarks from various domains, our method outperforms or is competitive with the previous best models, including those with additional MDS pre-training or with more parameters. It outperforms its corresponding PLM backbone by up to 3 Rouge-L and is favored by humans.

pdf bib
Is GPT-4 a Good Data Analyst?
Liying Cheng | Xingxuan Li | Lidong Bing
Findings of the Association for Computational Linguistics: EMNLP 2023

As large language models (LLMs) have demonstrated their powerful capabilities in plenty of domains and tasks, including context understanding, code generation, language generation, data storytelling, etc., many data analysts may raise concerns if their jobs will be replaced by artificial intelligence (AI). This controversial topic has drawn great attention in public. However, we are still at a stage of divergent opinions without any definitive conclusion. Motivated by this, we raise the research question of “is GPT-4 a good data analyst?” in this work and aim to answer it by conducting head-to-head comparative studies. In detail, we regard GPT-4 as a data analyst to perform end-to-end data analysis with databases from a wide range of domains. We propose a framework to tackle the problems by carefully designing the prompts for GPT-4 to conduct experiments. We also design several task-specific evaluation metrics to systematically compare the performance between several professional human data analysts and GPT-4. Experimental results show that GPT-4 can achieve comparable performance to humans. We also provide in-depth discussions about our results to shed light on further studies before reaching the conclusion that GPT-4 can replace data analysts.

pdf bib
LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of Large Language Models
Zhiqiang Hu | Lei Wang | Yihuai Lan | Wanyu Xu | Ee-Peng Lim | Lidong Bing | Xing Xu | Soujanya Poria | Roy Lee
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The success of large language models (LLMs), like GPT-4 and ChatGPT, has led to the development of numerous cost-effective and accessible alternatives that are created by finetuning open-access LLMs with task-specific data (e.g., ChatDoctor) or instruction data (e.g., Alpaca). Among the various fine-tuning methods, adapter-based parameter-efficient fine-tuning (PEFT) is undoubtedly one of the most attractive topics, as it only requires fine-tuning a few external parameters instead of the entire LLMs while achieving comparable or even better performance. To enable further research on PEFT methods of LLMs, this paper presents LLM-Adapters, an easy-to-use framework that integrates various adapters into LLMs and can execute these adapter-based PEFT methods of LLMs for different tasks. The framework includes state-of-the-art open-access LLMs such as LLaMA, BLOOM, and GPT-J, as well as widely used adapters such as Series adapters, Parallel adapter, Prompt-based learning and Reparametrization-based methods. Moreover, we conduct extensive empirical studies on the impact of adapter types, placement locations, and hyper-parameters to the best design for each adapter-based methods. We evaluate the effectiveness of the adapters on fourteen datasets from two different reasoning tasks, Arithmetic Reasoning and Commonsense Reasoning. The results demonstrate that using adapter-based PEFT in smaller-scale LLMs (7B) with few extra trainable parameters yields comparable, and in some cases superior, performance to powerful LLMs (175B) in zero-shot inference on simple math reasoning datasets.

pdf bib
SOUL: Towards Sentiment and Opinion Understanding of Language
Yue Deng | Wenxuan Zhang | Sinno Pan | Lidong Bing
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Sentiment analysis is a well-established natural language processing task, with sentiment polarity classification being one of its most popular and representative tasks. However, despite the success of pre-trained language models in this area, they often fall short of capturing the broader complexities of sentiment analysis. To address this issue, we propose a new task called Sentiment and Opinion Understanding of Language (SOUL). SOUL aims to evaluate sentiment understanding through two subtasks: Review Comprehension (RC) and Justification Generation (JG). RC seeks to validate statements that focus on subjective information based on a review text, while JG requires models to provide explanations for their sentiment predictions. To enable comprehensive evaluation, we annotate a new dataset comprising 15,028 statements from 3,638 reviews. Experimental results indicate that SOUL is a challenging task for both small and large language models, with a performance gap of up to 27% when compared to human performance. Furthermore, evaluations conducted with both human experts and GPT-4 highlight the limitations of the small language model in generating reasoning-based justifications. These findings underscore the challenging nature of the SOUL task for existing models, emphasizing the need for further advancements in sentiment analysis to address its complexities. The new dataset and code are available at https://github.com/DAMO-NLP-SG/SOUL.

pdf bib
Once Upon a Time in Graph: Relative-Time Pretraining for Complex Temporal Reasoning
Sen Yang | Xin Li | Lidong Bing | Wai Lam
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Our physical world is constantly evolving over time, rendering challenges for pre-trained language models to understand and reason over the temporal contexts of texts. Existing work focuses on strengthening the direct association between a piece of text and its time-stamp. However, the knowledge-time association is usually insufficient for the downstream tasks that require reasoning over temporal dependencies between knowledge. In this work, we make use of the underlying nature of time, all temporally-scoped sentences are strung together through a one-dimensional time axis, and suggest creating a graph structure based on the relative placements of events along the time axis. Inspired by the graph view, we propose RemeMo ( ̲Relative Ti ̲me  ̲Modeling), which explicitly connects all temporally-scoped facts by modeling the time relations between any two sentences. Experimental results show that RemeMo outperforms the baseline T5 on multiple temporal question answering datasets under various settings. Further analysis suggests that RemeMo is especially good at modeling long-range complex temporal dependencies.

pdf bib
Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding
Hang Zhang | Xin Li | Lidong Bing
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

We present Video-LLaMA, a multi-modal framework that empowers Large Language Models (LLMs) with the capability of understanding both visual and auditory content in the video. Video-LLaMA bootstraps cross-modal training from the frozen pre-trained visual & audio encoders and the frozen LLMs. Unlike previous works that complement LLMs to process the visual or audio signals only, Video-LLaMA enables video comprehension by tackling two challenges: (1) capturing the temporal changes in visual scenes, (2) integrating audio-visual signals. To counter the first challenge, we propose a Video Q-former to assemble a pre-trained image encoder into our video encoder and introduce a video-to-text generation task to learn video-language correspondence. For the second challenge, we leverage ImageBind, a universal embedding model aligning multiple modalities, as the pre-trained audio encoder and introduce an Audio Q-former on top of ImageBind to learn reasonable auditory query embeddings for the LLM module. To align the output of both visual & audio encoders with LLM’s embedding space, we first train Video-LLaMA on massive video/image-caption pairs and then tune our model with visual-instruction datasets of moderate amount but higher quality. We found Video-LLaMA shows the ability to perceive and comprehend video content and generate meaningful responses grounded in the visual and auditory information presented in the videos.

pdf bib
Towards Integration of Discriminability and Robustness for Document-Level Relation Extraction
Jia Guo | Stanley Kok | Lidong Bing
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Document-level relation extraction (DocRE) predicts relations for entity pairs that rely on long-range context-dependent reasoning in a document. As a typical multi-label classification problem, DocRE faces the challenge of effectively distinguishing a small set of positive relations from the majority of negative ones. This challenge becomes even more difficult to overcome when there exists a significant number of annotation errors in the dataset. In this work, we aim to achieve better integration of both the discriminability and robustness for the DocRE problem. Specifically, we first design an effective loss function to endow high discriminability to both probabilistic outputs and internal representations. We innovatively customize entropy minimization and supervised contrastive learning for the challenging multi-label and long-tailed learning problems. To ameliorate the impact of label errors, we equipped our method with a novel negative label sampling strategy to strengthen the model robustness. In addition, we introduce two new data regimes to mimic more realistic scenarios with annotation errors and evaluate our sampling strategy. Experimental results verify the effectiveness of each component and show that our method achieves new state-of-the-art results on the DocRED dataset, its recently cleaned version, Re-DocRED, and the proposed data regimes.

2022

pdf bib
GlobalWoZ: Globalizing MultiWoZ to Develop Multilingual Task-Oriented Dialogue Systems
Bosheng Ding | Junjie Hu | Lidong Bing | Mahani Aljunied | Shafiq Joty | Luo Si | Chunyan Miao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Over the last few years, there has been a move towards data curation for multilingual task-oriented dialogue (ToD) systems that can serve people speaking different languages. However, existing multilingual ToD datasets either have a limited coverage of languages due to the high cost of data curation, or ignore the fact that dialogue entities barely exist in countries speaking these languages. To tackle these limitations, we introduce a novel data curation method that generates GlobalWoZ — a large-scale multilingual ToD dataset globalized from an English ToD dataset for three unexplored use cases of multilingual ToD systems. Our method is based on translating dialogue templates and filling them with local entities in the target-language countries. Besides, we extend the coverage of target languages to 20 languages. We will release our dataset and a set of strong baselines to encourage research on multilingual ToD systems for real use cases.

pdf bib
MELM: Data Augmentation with Masked Entity Language Modeling for Low-Resource NER
Ran Zhou | Xin Li | Ruidan He | Lidong Bing | Erik Cambria | Luo Si | Chunyan Miao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Data augmentation is an effective solution to data scarcity in low-resource scenarios. However, when applied to token-level tasks such as NER, data augmentation methods often suffer from token-label misalignment, which leads to unsatsifactory performance. In this work, we propose Masked Entity Language Modeling (MELM) as a novel data augmentation framework for low-resource NER. To alleviate the token-label misalignment issue, we explicitly inject NER labels into sentence context, and thus the fine-tuned MELM is able to predict masked entity tokens by explicitly conditioning on their labels. Thereby, MELM generates high-quality augmented data with novel entities, which provides rich entity regularity knowledge and boosts NER performance. When training data from multiple languages are available, we also integrate MELM with code-mixing for further improvement. We demonstrate the effectiveness of MELM on monolingual, cross-lingual and multilingual NER across various low-resource levels. Experimental results show that our MELM consistently outperforms the baseline methods.

pdf bib
IAM: A Comprehensive and Large-Scale Dataset for Integrated Argument Mining Tasks
Liying Cheng | Lidong Bing | Ruidan He | Qian Yu | Yan Zhang | Luo Si
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Traditionally, a debate usually requires a manual preparation process, including reading plenty of articles, selecting the claims, identifying the stances of the claims, seeking the evidence for the claims, etc. As the AI debate attracts more attention these years, it is worth exploring the methods to automate the tedious process involved in the debating system. In this work, we introduce a comprehensive and large dataset named IAM, which can be applied to a series of argument mining tasks, including claim extraction, stance classification, evidence extraction, etc. Our dataset is collected from over 1k articles related to 123 topics. Near 70k sentences in the dataset are fully annotated based on their argument properties (e.g., claims, stances, evidence, etc.). We further propose two new integrated argument mining tasks associated with the debate preparation process: (1) claim extraction with stance classification (CESC) and (2) claim-evidence pair extraction (CEPE). We adopt a pipeline approach and an end-to-end method for each integrated task separately. Promising experimental results are reported to show the values and challenges of our proposed tasks, and motivate future research on argument mining.

pdf bib
Retrofitting Multilingual Sentence Embeddings with Abstract Meaning Representation
Deng Cai | Xin Li | Jackie Chun-Sing Ho | Lidong Bing | Wai Lam
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We introduce a new method to improve existing multilingual sentence embeddings with Abstract Meaning Representation (AMR). Compared with the original textual input, AMR is a structured semantic representation that presents the core concepts and relations in a sentence explicitly and unambiguously. It also helps reduce the surface variations across different expressions and languages. Unlike most prior work that only evaluates the ability to measure semantic similarity, we present a thorough evaluation of existing multilingual sentence embeddings and our improved versions, which include a collection of five transfer tasks in different downstream applications. Experiment results show that retrofitting multilingual sentence embeddings with AMR leads to better state-of-the-art performance on both semantic textual similarity and transfer tasks.

pdf bib
Enhancing Multilingual Language Model with Massive Multilingual Knowledge Triples
Linlin Liu | Xin Li | Ruidan He | Lidong Bing | Shafiq Joty | Luo Si
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Knowledge-enhanced language representation learning has shown promising results across various knowledge-intensive NLP tasks. However, prior methods are limited in efficient utilization of multilingual knowledge graph (KG) data for language model (LM) pretraining. They often train LMs with KGs in indirect ways, relying on extra entity/relation embeddings to facilitate knowledge injection. In this work, we explore methods to make better use of the multilingual annotation and language agnostic property of KG triples, and present novel knowledge based multilingual language models (KMLMs) trained directly on the knowledge triples. We first generate a large amount of multilingual synthetic sentences using the Wikidata KG triples. Then based on the intra- and inter-sentence structures of the generated data, we design pretraining tasks to enable the LMs to not only memorize the factual knowledge but also learn useful logical patterns. Our pretrained KMLMs demonstrate significant performance improvements on a wide range of knowledge-intensive cross-lingual tasks, including named entity recognition (NER), factual knowledge retrieval, relation classification, and a newly designed logical reasoning task.

pdf bib
ConNER: Consistency Training for Cross-lingual Named Entity Recognition
Ran Zhou | Xin Li | Lidong Bing | Erik Cambria | Luo Si | Chunyan Miao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Cross-lingual named entity recognition (NER) suffers from data scarcity in the target languages, especially under zero-shot settings. Existing translate-train or knowledge distillation methods attempt to bridge the language gap, but often introduce a high level of noise. To solve this problem, consistency training methods regularize the model to be robust towards perturbations on data or hidden states.However, such methods are likely to violate the consistency hypothesis, or mainly focus on coarse-grain consistency.We propose ConNER as a novel consistency training framework for cross-lingual NER, which comprises of: (1) translation-based consistency training on unlabeled target-language data, and (2) dropout-based consistency training on labeled source-language data. ConNER effectively leverages unlabeled target-language data and alleviates overfitting on the source language to enhance the cross-lingual adaptability. Experimental results show our ConNER achieves consistent improvement over various baseline methods.

pdf bib
Revisiting DocRED - Addressing the False Negative Problem in Relation Extraction
Qingyu Tan | Lu Xu | Lidong Bing | Hwee Tou Ng | Sharifah Mahani Aljunied
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

The DocRED dataset is one of the most popular and widely used benchmarks for document-level relation extraction (RE). It adopts a recommend-revise annotation scheme so as to have a large-scale annotated dataset. However, we find that the annotation of DocRED is incomplete, i.e., false negative samples are prevalent. We analyze the causes and effects of the overwhelming false negative problem in the DocRED dataset. To address the shortcoming, we re-annotate 4,053 documents in the DocRED dataset by adding the missed relation triples back to the original DocRED. We name our revised DocRED dataset Re-DocRED. We conduct extensive experiments with state-of-the-art neural models on both datasets, and the experimental results show that the models trained and evaluated on our Re-DocRED achieve performance improvements of around 13 F1 points. Moreover, we conduct a comprehensive analysis to identify the potential areas for further improvement.

pdf bib
Adaptive Contrastive Learning on Multimodal Transformer for Review Helpfulness Prediction
Thong Nguyen | Xiaobao Wu | Anh Tuan Luu | Zhen Hai | Lidong Bing
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Modern Review Helpfulness Prediction systems are dependent upon multiple modalities, typically texts and images. Unfortunately, those contemporary approaches pay scarce attention to polish representations of cross-modal relations and tend to suffer from inferior optimization. This might cause harm to model’s predictions in numerous cases. To overcome the aforementioned issues, we propose Multi-modal Contrastive Learning for Multimodal Review Helpfulness Prediction (MRHP) problem, concentrating on mutual information between input modalities to explicitly elaborate cross-modal relations. In addition, we introduce Adaptive Weighting scheme for our contrastive learning approach in order to increase flexibility in optimization. Lastly, we propose Multimodal Interaction module to address the unalignment nature of multimodal data, thereby assisting the model in producing more reasonable multimodal representations. Experimental results show that our method outperforms prior baselines and achieves state-of-the-art results on two publicly available benchmark datasets for MRHP problem.

pdf bib
A Dataset for Hyper-Relational Extraction and a Cube-Filling Approach
Yew Ken Chia | Lidong Bing | Sharifah Mahani Aljunied | Luo Si | Soujanya Poria
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Relation extraction has the potential for large-scale knowledge graph construction, but current methods do not consider the qualifier attributes for each relation triplet, such as time, quantity or location. The qualifiers form hyper-relational facts which better capture the rich and complex knowledge graph structure. For example, the relation triplet (Leonard Parker, Educated At, Harvard University) can be factually enriched by including the qualifier (End Time, 1967). Hence, we propose the task of hyper-relational extraction to extract more specific and complete facts from text. To support the task, we construct HyperRED, a large-scale and general-purpose dataset. Existing models cannot perform hyper-relational extraction as it requires a model to consider the interaction between three entities. Hence, we propose CubeRE, a cube-filling model inspired by table-filling approaches and explicitly considers the interaction between relation triplets and qualifiers. To improve model scalability and reduce negative class imbalance, we further propose a cube-pruning method. Our experiments show that CubeRE outperforms strong baselines and reveal possible directions for future research. Our code and data are available at github.com/declare-lab/HyperRED.

pdf bib
SentBS: Sentence-level Beam Search for Controllable Summarization
Chenhui Shen | Liying Cheng | Lidong Bing | Yang You | Luo Si
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

A wide range of control perspectives have been explored in controllable text generation. Structure-controlled summarization is recently proposed as a useful and interesting research direction. However, current structure-controlling methods have limited effectiveness in enforcing the desired structure. To address this limitation, we propose a sentence-level beam search generation method (SentBS), where evaluation is conducted throughout the generation process to select suitable sentences for subsequent generations. We experiment with different combinations of decoding methods to be used as sub-components by SentBS and evaluate results on the structure-controlled dataset MReD. Experiments show that all explored combinations for SentBS can improve the agreement between the generated text and the desired structure, with the best method significantly reducing the structural discrepancies suffered by the existing model, by approximately 68%.

pdf bib
Interventional Training for Out-Of-Distribution Natural Language Understanding
Sicheng Yu | Jing Jiang | Hao Zhang | Yulei Niu | Qianru Sun | Lidong Bing
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Out-of-distribution (OOD) settings are used to measure a model’s performance when the distribution of the test data is different from that of the training data. NLU models are known to suffer in OOD. We study this issue from the perspective of causality, which sees confounding bias as the reason for models to learn spurious correlations. While a common solution is to perform intervention, existing methods handle only known and single confounder, but in many NLU tasks the confounders can be both unknown and multifactorial. In this paper, we propose a novel interventional training method called Bottom-up Automatic Intervention (BAI) that performs multi-granular intervention with identified multifactorial confounders. Our experiments on three NLU tasks, namely, natural language inference, fact verification and paraphrase identification, show the effectiveness of BAI for tackling OOD settings.

pdf bib
RelationPrompt: Leveraging Prompts to Generate Synthetic Data for Zero-Shot Relation Triplet Extraction
Yew Ken Chia | Lidong Bing | Soujanya Poria | Luo Si
Findings of the Association for Computational Linguistics: ACL 2022

Despite the importance of relation extraction in building and representing knowledge, less research is focused on generalizing to unseen relations types. We introduce the task setting of Zero-Shot Relation Triplet Extraction (ZeroRTE) to encourage further research in low-resource relation extraction methods. Given an input sentence, each extracted triplet consists of the head entity, relation label, and tail entity where the relation label is not seen at the training stage. To solve ZeroRTE, we propose to synthesize relation examples by prompting language models to generate structured texts. Concretely, we unify language model prompts and structured text approaches to design a structured prompt template for generating synthetic relation samples when conditioning on relation label prompts (RelationPrompt). To overcome the limitation for extracting multiple relation triplets in a sentence, we design a novel Triplet Search Decoding method. Experiments on FewRel and Wiki-ZSL datasets show the efficacy of RelationPrompt for the ZeroRTE task and zero-shot relation classification. Our code and data are available at github.com/declare-lab/RelationPrompt.

pdf bib
Document-Level Relation Extraction with Adaptive Focal Loss and Knowledge Distillation
Qingyu Tan | Ruidan He | Lidong Bing | Hwee Tou Ng
Findings of the Association for Computational Linguistics: ACL 2022

Document-level Relation Extraction (DocRE) is a more challenging task compared to its sentence-level counterpart. It aims to extract relations from multiple sentences at once. In this paper, we propose a semi-supervised framework for DocRE with three novel components. Firstly, we use an axial attention module for learning the interdependency among entity-pairs, which improves the performance on two-hop relations. Secondly, we propose an adaptive focal loss to tackle the class imbalance problem of DocRE. Lastly, we use knowledge distillation to overcome the differences between human annotated data and distantly supervised data. We conducted experiments on two DocRE datasets. Our model consistently outperforms strong baselines and its performance exceeds the previous SOTA by 1.36 F1 and 1.46 Ign_F1 score on the DocRED leaderboard.

pdf bib
MReD: A Meta-Review Dataset for Structure-Controllable Text Generation
Chenhui Shen | Liying Cheng | Ran Zhou | Lidong Bing | Yang You | Luo Si
Findings of the Association for Computational Linguistics: ACL 2022

When directly using existing text generation datasets for controllable generation, we are facing the problem of not having the domain knowledge and thus the aspects that could be controlled are limited. A typical example is when using CNN/Daily Mail dataset for controllable text summarization, there is no guided information on the emphasis of summary sentences. A more useful text generator should leverage both the input text and the control signal to guide the generation, which can only be built with deep understanding of the domain knowledge. Motivated by this vision, our paper introduces a new text generation dataset, named MReD. Our new dataset consists of 7,089 meta-reviews and all its 45k meta-review sentences are manually annotated with one of the 9 carefully defined categories, including abstract, strength, decision, etc. We present experimental results on start-of-the-art summarization models, and propose methods for structure-controlled generation with both extractive and abstractive models using our annotated data. By exploring various settings and analyzing the model behavior with respect to the control signal, we demonstrate the challenges of our proposed task and the values of our dataset MReD. Meanwhile, MReD also allows us to have a better understanding of the meta-review domain.

pdf bib
Towards Multi-Sense Cross-Lingual Alignment of Contextual Embeddings
Linlin Liu | Thien Hai Nguyen | Shafiq Joty | Lidong Bing | Luo Si
Proceedings of the 29th International Conference on Computational Linguistics

Cross-lingual word embeddings (CLWE) have been proven useful in many cross-lingual tasks. However, most existing approaches to learn CLWE including the ones with contextual embeddings are sense agnostic. In this work, we propose a novel framework to align contextual embeddings at the sense level by leveraging cross-lingual signal from bilingual dictionaries only. We operationalize our framework by first proposing a novel sense-aware cross entropy loss to model word senses explicitly. The monolingual ELMo and BERT models pretrained with our sense-aware cross entropy loss demonstrate significant performance improvement for word sense disambiguation tasks. We then propose a sense alignment objective on top of the sense-aware cross entropy loss for cross-lingual model pretraining, and pretrain cross-lingual models for several language pairs (English to German/Spanish/Japanese/Chinese). Compared with the best baseline results, our cross-lingual models achieve 0.52%, 2.09% and 1.29% average performance improvements on zero-shot cross-lingual NER, sentiment classification and XNLI tasks, respectively.

pdf bib
SANCL: Multimodal Review Helpfulness Prediction with Selective Attention and Natural Contrastive Learning
Wei Han | Hui Chen | Zhen Hai | Soujanya Poria | Lidong Bing
Proceedings of the 29th International Conference on Computational Linguistics

With the boom of e-commerce, Multimodal Review Helpfulness Prediction (MRHP) that identifies the helpfulness score of multimodal product reviews has become a research hotspot. Previous work on this task focuses on attention-based modality fusion, information integration, and relation modeling, which primarily exposes the following drawbacks: 1) the model may fail to capture the really essential information due to its indiscriminate attention formulation; 2) lack appropriate modeling methods that takes full advantage of correlation among provided data. In this paper, we propose SANCL: Selective Attention and Natural Contrastive Learning for MRHP. SANCL adopts a probe-based strategy to enforce high attention weights on the regions of greater significance. It also constructs a contrastive learning framework based on natural matching properties in the dataset. Experimental results on two benchmark datasets with three categories show that SANCL achieves state-of-the-art baseline performance with lower memory consumption.

pdf bib
Domain Generalization for Text Classification with Memory-Based Supervised Contrastive Learning
Qingyu Tan | Ruidan He | Lidong Bing | Hwee Tou Ng
Proceedings of the 29th International Conference on Computational Linguistics

While there is much research on cross-domain text classification, most existing approaches focus on one-to-one or many-to-one domain adaptation. In this paper, we tackle the more challenging task of domain generalization, in which domain-invariant representations are learned from multiple source domains, without access to any data from the target domains, and classification decisions are then made on test documents in unseen target domains. We propose a novel framework based on supervised contrastive learning with a memory-saving queue. In this way, we explicitly encourage examples of the same class to be closer and examples of different classes to be further apart in the embedding space. We have conducted extensive experiments on two Amazon review sentiment datasets, and one rumour detection dataset. Experimental results show that our domain generalization method consistently outperforms state-of-the-art domain adaptation methods.

2021

pdf bib
On the Effectiveness of Adapter-based Tuning for Pretrained Language Model Adaptation
Ruidan He | Linlin Liu | Hai Ye | Qingyu Tan | Bosheng Ding | Liying Cheng | Jiawei Low | Lidong Bing | Luo Si
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Adapter-based tuning has recently arisen as an alternative to fine-tuning. It works by adding light-weight adapter modules to a pretrained language model (PrLM) and only updating the parameters of adapter modules when learning on a downstream task. As such, it adds only a few trainable parameters per new task, allowing a high degree of parameter sharing. Prior studies have shown that adapter-based tuning often achieves comparable results to fine-tuning. However, existing work only focuses on the parameter-efficient aspect of adapter-based tuning while lacking further investigation on its effectiveness. In this paper, we study the latter. We first show that adapter-based tuning better mitigates forgetting issues than fine-tuning since it yields representations with less deviation from those generated by the initial PrLM. We then empirically compare the two tuning methods on several downstream NLP tasks and settings. We demonstrate that 1) adapter-based tuning outperforms fine-tuning on low-resource and cross-lingual tasks; 2) it is more robust to overfitting and less sensitive to changes in learning rates.

pdf bib
Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction
Lu Xu | Yew Ken Chia | Lidong Bing
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Aspect Sentiment Triplet Extraction (ASTE) is the most recent subtask of ABSA which outputs triplets of an aspect target, its associated sentiment, and the corresponding opinion term. Recent models perform the triplet extraction in an end-to-end manner but heavily rely on the interactions between each target word and opinion word. Thereby, they cannot perform well on targets and opinions which contain multiple words. Our proposed span-level approach explicitly considers the interaction between the whole spans of targets and opinions when predicting their sentiment relation. Thus, it can make predictions with the semantics of whole spans, ensuring better sentiment consistency. To ease the high computational cost caused by span enumeration, we propose a dual-channel span pruning strategy by incorporating supervision from the Aspect Term Extraction (ATE) and Opinion Term Extraction (OTE) tasks. This strategy not only improves computational efficiency but also distinguishes the opinion and target spans more properly. Our framework simultaneously achieves strong performance for the ASTE as well as ATE and OTE tasks. In particular, our analysis shows that our span-level approach achieves more significant improvements over the baselines on triplets with multi-word targets or opinions.

pdf bib
Bootstrapped Unsupervised Sentence Representation Learning
Yan Zhang | Ruidan He | Zuozhu Liu | Lidong Bing | Haizhou Li
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

As high-quality labeled data is scarce, unsupervised sentence representation learning has attracted much attention. In this paper, we propose a new framework with a two-branch Siamese Network which maximizes the similarity between two augmented views of each sentence. Specifically, given one augmented view of the input sentence, the online network branch is trained by predicting the representation yielded by the target network of the same sentence under another augmented view. Meanwhile, the target network branch is bootstrapped with a moving average of the online network. The proposed method significantly outperforms other state-of-the-art unsupervised methods on semantic textual similarity (STS) and classification tasks. It can be adopted as a post-training procedure to boost the performance of the supervised methods. We further extend our method for learning multilingual sentence representations and demonstrate its effectiveness on cross-lingual STS tasks. Our code is available at https://github.com/yanzhangnlp/BSL.

pdf bib
MulDA: A Multilingual Data Augmentation Framework for Low-Resource Cross-Lingual NER
Linlin Liu | Bosheng Ding | Lidong Bing | Shafiq Joty | Luo Si | Chunyan Miao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Named Entity Recognition (NER) for low-resource languages is a both practical and challenging research problem. This paper addresses zero-shot transfer for cross-lingual NER, especially when the amount of source-language training data is also limited. The paper first proposes a simple but effective labeled sequence translation method to translate source-language training data to target languages and avoids problems such as word order change and entity span determination. With the source-language data as well as the translated data, a generation-based multilingual data augmentation method is introduced to further increase diversity by generating synthetic labeled data in multiple languages. These augmented data enable the language model based NER models to generalize better with both the language-specific features from the target-language synthetic data and the language-independent features from multilingual synthetic data. An extensive set of experiments were conducted to demonstrate encouraging cross-lingual transfer performance of the new research on a wide variety of target languages.

pdf bib
Multi-perspective Coherent Reasoning for Helpfulness Prediction of Multimodal Reviews
Junhao Liu | Zhen Hai | Min Yang | Lidong Bing
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

As more and more product reviews are posted in both text and images, Multimodal Review Analysis (MRA) becomes an attractive research topic. Among the existing review analysis tasks, helpfulness prediction on review text has become predominant due to its importance for e-commerce platforms and online shops, i.e. helping customers quickly acquire useful product information. This paper proposes a new task Multimodal Review Helpfulness Prediction (MRHP) aiming to analyze the review helpfulness from text and visual modalities. Meanwhile, a novel Multi-perspective Coherent Reasoning method (MCR) is proposed to solve the MRHP task, which conducts joint reasoning over texts and images from both the product and the review, and aggregates the signals to predict the review helpfulness. Concretely, we first propose a product-review coherent reasoning module to measure the intra- and inter-modal coherence between the target product and the review. In addition, we also devise an intra-review coherent reasoning module to identify the coherence between the text content and images of the review, which is a piece of strong evidence for review helpfulness prediction. To evaluate the effectiveness of MCR, we present two newly collected multimodal review datasets as benchmark evaluation resources for the MRHP task. Experimental results show that our MCR method can lead to a performance increase of up to 8.5% as compared to the best performing text-only model. The source code and datasets can be obtained from https://github.com/jhliu17/MCR.

pdf bib
Argument Pair Extraction via Attention-guided Multi-Layer Multi-Cross Encoding
Liying Cheng | Tianyu Wu | Lidong Bing | Luo Si
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Argument pair extraction (APE) is a research task for extracting arguments from two passages and identifying potential argument pairs. Prior research work treats this task as a sequence labeling problem and a binary classification problem on two passages that are directly concatenated together, which has a limitation of not fully utilizing the unique characteristics and inherent relations of two different passages. This paper proposes a novel attention-guided multi-layer multi-cross encoding scheme to address the challenges. The new model processes two passages with two individual sequence encoders and updates their representations using each other’s representations through attention. In addition, the pair prediction part is formulated as a table-filling problem by updating the representations of two sequences’ Cartesian product. Furthermore, an auxiliary attention loss is introduced to guide each argument to align to its paired argument. An extensive set of experiments show that the new model significantly improves the APE performance over several alternatives.

pdf bib
Towards Generative Aspect-Based Sentiment Analysis
Wenxuan Zhang | Xin Li | Yang Deng | Lidong Bing | Wai Lam
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Aspect-based sentiment analysis (ABSA) has received increasing attention recently. Most existing work tackles ABSA in a discriminative manner, designing various task-specific classification networks for the prediction. Despite their effectiveness, these methods ignore the rich label semantics in ABSA problems and require extensive task-specific designs. In this paper, we propose to tackle various ABSA tasks in a unified generative framework. Two types of paradigms, namely annotation-style and extraction-style modeling, are designed to enable the training process by formulating each ABSA task as a text generation problem. We conduct experiments on four ABSA tasks across multiple benchmark datasets where our proposed generative approach achieves new state-of-the-art results in almost all cases. This also validates the strong generality of the proposed framework which can be easily adapted to arbitrary ABSA task without additional task-specific model design.

pdf bib
Better Feature Integration for Named Entity Recognition
Lu Xu | Zhanming Jie | Wei Lu | Lidong Bing
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

It has been shown that named entity recognition (NER) could benefit from incorporating the long-distance structured information captured by dependency trees. We believe this is because both types of features - the contextual information captured by the linear sequences and the structured information captured by the dependency trees may complement each other. However, existing approaches largely focused on stacking the LSTM and graph neural networks such as graph convolutional networks (GCNs) for building improved NER models, where the exact interaction mechanism between the two types of features is not very clear, and the performance gain does not appear to be significant. In this work, we propose a simple and robust solution to incorporate both types of features with our Synergized-LSTM (Syn-LSTM), which clearly captures how the two types of features interact. We conduct extensive experiments on several standard datasets across four languages. The results demonstrate that the proposed model achieves better performance than previous approaches while requiring fewer parameters. Our further analysis demonstrates that our model can capture longer dependencies compared with strong baselines.

pdf bib
Multilingual AMR Parsing with Noisy Knowledge Distillation
Deng Cai | Xin Li | Jackie Chun-Sing Ho | Lidong Bing | Wai Lam
Findings of the Association for Computational Linguistics: EMNLP 2021

We study multilingual AMR parsing from the perspective of knowledge distillation, where the aim is to learn and improve a multilingual AMR parser by using an existing English parser as its teacher. We constrain our exploration in a strict multilingual setting: there is but one model to parse all different languages including English. We identify that noisy input and precise output are the key to successful distillation. Together with extensive pre-training, we obtain an AMR parser whose performances surpass all previously published results on four different foreign languages, including German, Spanish, Italian, and Chinese, by large margins (up to 18.8 Smatch points on Chinese and on average 11.3 Smatch points). Our parser also achieves comparable performance on English to the latest state-of-the-art English-only parser.

pdf bib
Aspect-based Sentiment Analysis in Question Answering Forums
Wenxuan Zhang | Yang Deng | Xin Li | Lidong Bing | Wai Lam
Findings of the Association for Computational Linguistics: EMNLP 2021

Aspect-based sentiment analysis (ABSA) typically focuses on extracting aspects and predicting their sentiments on individual sentences such as customer reviews. Recently, another kind of opinion sharing platform, namely question answering (QA) forum, has received increasing popularity, which accumulates a large number of user opinions towards various aspects. This motivates us to investigate the task of ABSA on QA forums (ABSA-QA), aiming to jointly detect the discussed aspects and their sentiment polarities for a given QA pair. Unlike review sentences, a QA pair is composed of two parallel sentences, which requires interaction modeling to align the aspect mentioned in the question and the associated opinion clues in the answer. To this end, we propose a model with a specific design of cross-sentence aspect-opinion interaction modeling to address this task. The proposed method is evaluated on three real-world datasets and the results show that our model outperforms several strong baselines adopted from related state-of-the-art models.

pdf bib
Aspect Sentiment Quad Prediction as Paraphrase Generation
Wenxuan Zhang | Yang Deng | Xin Li | Yifei Yuan | Lidong Bing | Wai Lam
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Aspect-based sentiment analysis (ABSA) has been extensively studied in recent years, which typically involves four fundamental sentiment elements, including the aspect category, aspect term, opinion term, and sentiment polarity. Existing studies usually consider the detection of partial sentiment elements, instead of predicting the four elements in one shot. In this work, we introduce the Aspect Sentiment Quad Prediction (ASQP) task, aiming to jointly detect all sentiment elements in quads for a given opinionated sentence, which can reveal a more comprehensive and complete aspect-level sentiment structure. We further propose a novel Paraphrase modeling paradigm to cast the ASQP task to a paraphrase generation process. On one hand, the generation formulation allows solving ASQP in an end-to-end manner, alleviating the potential error propagation in the pipeline solution. On the other hand, the semantics of the sentiment elements can be fully exploited by learning to generate them in the natural language form. Extensive experiments on benchmark datasets show the superiority of our proposed method and the capacity of cross-task transfer with the proposed unified Paraphrase modeling framework.

pdf bib
Cross-lingual Aspect-based Sentiment Analysis with Aspect Term Code-Switching
Wenxuan Zhang | Ruidan He | Haiyun Peng | Lidong Bing | Wai Lam
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Many efforts have been made in solving the Aspect-based sentiment analysis (ABSA) task. While most existing studies focus on English texts, handling ABSA in resource-poor languages remains a challenging problem. In this paper, we consider the unsupervised cross-lingual transfer for the ABSA task, where only labeled data in the source language is available and we aim at transferring its knowledge to the target language having no labeled data. To this end, we propose an alignment-free label projection method to obtain high-quality pseudo-labeled data of the target language with the help of the translation system, which could preserve more accurate task-specific knowledge in the target language. For better utilizing the source and translated data, as well as enhancing the cross-lingual alignment, we design an aspect code-switching mechanism to augment the training data with code-switched bilingual sentences. To further investigate the importance of language-specific knowledge in solving the ABSA problem, we distill the above model on the unlabeled target language data which improves the performance to the same level of the supervised method.

2020

pdf bib
Dynamic Topic Tracker for KB-to-Text Generation
Zihao Fu | Lidong Bing | Wai Lam | Shoaib Jameel
Proceedings of the 28th International Conference on Computational Linguistics

Recently, many KB-to-text generation tasks have been proposed to bridge the gap between knowledge bases and natural language by directly converting a group of knowledge base triples into human-readable sentences. However, most of the existing models suffer from the off-topic problem, namely, the models are prone to generate some unrelated clauses that are somehow involved with certain input terms regardless of the given input data. This problem seriously degrades the quality of the generation results. In this paper, we propose a novel dynamic topic tracker for solving this problem. Different from existing models, our proposed model learns a global hidden representation for topics and recognizes the corresponding topic during each generation step. The recognized topic is used as additional information to guide the generation process and thus alleviates the off-topic problem. The experimental results show that our proposed model can enhance the performance of sentence generation and the off-topic problem is significantly mitigated.

pdf bib
Unsupervised KB-to-Text Generation with Auxiliary Triple Extraction using Dual Learning
Zihao Fu | Bei Shi | Lidong Bing | Wai Lam
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

KB-to-text task aims at generating texts based on the given KB triples. Traditional methods usually map KB triples to sentences via a supervised seq-to-seq model. However, existing annotated datasets are very limited and human labeling is very expensive. In this paper, we propose a method which trains the generation model in a completely unsupervised way with unaligned raw text data and KB triples. Our method exploits a novel dual training framework which leverages the inverse relationship between the KB-to-text generation task and an auxiliary triple extraction task. In our architecture, we reconstruct KB triples or texts via a closed-loop framework via linking a generator and an extractor. Therefore the loss function that accounts for the reconstruction error of KB triples and texts can be used to train the generator and extractor. To resolve the cold start problem in training, we propose a method using a pseudo data generator which generates pseudo texts and KB triples for learning an initial model. To resolve the multiple-triple problem, we design an allocated reinforcement learning component to optimize the reconstruction loss. The experimental results demonstrate that our model can outperform other unsupervised generation methods and close to the bound of supervised methods.

pdf bib
Review-based Question Generation with Adaptive Instance Transfer and Augmentation
Qian Yu | Lidong Bing | Qiong Zhang | Wai Lam | Luo Si
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

While online reviews of products and services become an important information source, it remains inefficient for potential consumers to exploit verbose reviews for fulfilling their information need. We propose to explore question generation as a new way of review information exploitation, namely generating questions that can be answered by the corresponding review sentences. One major challenge of this generation task is the lack of training data, i.e. explicit mapping relation between the user-posed questions and review sentences. To obtain proper training instances for the generation model, we propose an iterative learning framework with adaptive instance transfer and augmentation. To generate to the point questions about the major aspects in reviews, related features extracted in an unsupervised manner are incorporated without the burden of aspect annotation. Experiments on data from various categories of a popular E-commerce site demonstrate the effectiveness of the framework, as well as the potentials of the proposed review-based question generation task.

pdf bib
Improving Low-Resource Named Entity Recognition using Joint Sentence and Token Labeling
Canasai Kruengkrai | Thien Hai Nguyen | Sharifah Mahani Aljunied | Lidong Bing
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Exploiting sentence-level labels, which are easy to obtain, is one of the plausible methods to improve low-resource named entity recognition (NER), where token-level labels are costly to annotate. Current models for jointly learning sentence and token labeling are limited to binary classification. We present a joint model that supports multi-class classification and introduce a simple variant of self-attention that allows the model to learn scaling factors. Our model produces 3.78%, 4.20%, 2.08% improvements in F1 over the BiLSTM-CRF baseline on e-commerce product titles in three different low-resource languages: Vietnamese, Thai, and Indonesian, respectively.

pdf bib
ENT-DESC: Entity Description Generation by Exploring Knowledge Graph
Liying Cheng | Dekun Wu | Lidong Bing | Yan Zhang | Zhanming Jie | Wei Lu | Luo Si
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Previous works on knowledge-to-text generation take as input a few RDF triples or key-value pairs conveying the knowledge of some entities to generate a natural language description. Existing datasets, such as WIKIBIO, WebNLG, and E2E, basically have a good alignment between an input triple/pair set and its output text. However, in practice, the input knowledge could be more than enough, since the output description may only cover the most significant knowledge. In this paper, we introduce a large-scale and challenging dataset to facilitate the study of such a practical scenario in KG-to-text. Our dataset involves retrieving abundant knowledge of various types of main entities from a large knowledge graph (KG), which makes the current graph-to-sequence models severely suffer from the problems of information loss and parameter explosion while generating the descriptions. We address these challenges by proposing a multi-graph structure that is able to represent the original graph information more comprehensively. Furthermore, we also incorporate aggregation methods that learn to extract the rich graph information. Extensive experiments demonstrate the effectiveness of our model architecture.

pdf bib
An Unsupervised Sentence Embedding Method by Mutual Information Maximization
Yan Zhang | Ruidan He | Zuozhu Liu | Kwan Hui Lim | Lidong Bing
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

BERT is inefficient for sentence-pair tasks such as clustering or semantic search as it needs to evaluate combinatorially many sentence pairs which is very time-consuming. Sentence BERT (SBERT) attempted to solve this challenge by learning semantically meaningful representations of single sentences, such that similarity comparison can be easily accessed. However, SBERT is trained on corpus with high-quality labeled sentence pairs, which limits its application to tasks where labeled data is extremely scarce. In this paper, we propose a lightweight extension on top of BERT and a novel self-supervised learning objective based on mutual information maximization strategies to derive meaningful sentence embeddings in an unsupervised manner. Unlike SBERT, our method is not restricted by the availability of labeled data, such that it can be applied on different domain-specific corpus. Experimental results show that the proposed method significantly outperforms other unsupervised sentence embedding baselines on common semantic textual similarity (STS) tasks and downstream supervised tasks. It also outperforms SBERT in a setting where in-domain labeled data is not available, and achieves performance competitive with supervised methods on various tasks.

pdf bib
Lightweight, Dynamic Graph Convolutional Networks for AMR-to-Text Generation
Yan Zhang | Zhijiang Guo | Zhiyang Teng | Wei Lu | Shay B. Cohen | Zuozhu Liu | Lidong Bing
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

AMR-to-text generation is used to transduce Abstract Meaning Representation structures (AMR) into text. A key challenge in this task is to efficiently learn effective graph representations. Previously, Graph Convolution Networks (GCNs) were used to encode input AMRs, however, vanilla GCNs are not able to capture non-local information and additionally, they follow a local (first-order) information aggregation scheme. To account for these issues, larger and deeper GCN models are required to capture more complex interactions. In this paper, we introduce a dynamic fusion mechanism, proposing Lightweight Dynamic Graph Convolutional Networks (LDGCNs) that capture richer non-local interactions by synthesizing higher order information from the input graphs. We further develop two novel parameter saving strategies based on the group graph convolutions and weight tied convolutions to reduce memory usage and model complexity. With the help of these strategies, we are able to train a model with fewer parameters while maintaining the model capacity. Experiments demonstrate that LDGCNs outperform state-of-the-art models on two benchmark datasets for AMR-to-text generation with significantly fewer parameters.

pdf bib
Position-Aware Tagging for Aspect Sentiment Triplet Extraction
Lu Xu | Hao Li | Wei Lu | Lidong Bing
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Aspect Sentiment Triplet Extraction (ASTE) is the task of extracting the triplets of target entities, their associated sentiment, and opinion spans explaining the reason for the sentiment. Existing research efforts mostly solve this problem using pipeline approaches, which break the triplet extraction process into several stages. Our observation is that the three elements within a triplet are highly related to each other, and this motivates us to build a joint model to extract such triplets using a sequence tagging approach. However, how to effectively design a tagging approach to extract the triplets that can capture the rich interactions among the elements is a challenging research question. In this work, we propose the first end-to-end model with a novel position-aware tagging scheme that is capable of jointly extracting the triplets. Our experimental results on several existing datasets show that jointly capturing elements in the triplet using our approach leads to improved performance over the existing approaches. We also conducted extensive experiments to investigate the model effectiveness and robustness.

pdf bib
Aspect Sentiment Classification with Aspect-Specific Opinion Spans
Lu Xu | Lidong Bing | Wei Lu | Fei Huang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Aspect based sentiment analysis, predicting sentiment polarity of given aspects, has drawn extensive attention. Previous attention-based models emphasize using aspect semantics to help extract opinion features for classification. However, these works are either not able to capture opinion spans as a whole, or not able to capture variable-length opinion spans. In this paper, we present a neat and effective structured attention model by aggregating multiple linear-chain CRFs. Such a design allows the model to extract aspect-specific opinion spans and then evaluate sentiment polarity by exploiting the extracted opinion features. The experimental results on four datasets demonstrate the effectiveness of the proposed model, and our analysis demonstrates that our model can capture aspect-specific opinion spans.

pdf bib
DAGA: Data Augmentation with a Generation Approach for Low-resource Tagging Tasks
Bosheng Ding | Linlin Liu | Lidong Bing | Canasai Kruengkrai | Thien Hai Nguyen | Shafiq Joty | Luo Si | Chunyan Miao
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Data augmentation techniques have been widely used to improve machine learning performance as they facilitate generalization. In this work, we propose a novel augmentation method to generate high quality synthetic data for low-resource tagging tasks with language models trained on the linearized labeled sentences. Our method is applicable to both supervised and semi-supervised settings. For the supervised settings, we conduct extensive experiments on named entity recognition (NER), part of speech (POS) tagging and end-to-end target based sentiment analysis (E2E-TBSA) tasks. For the semi-supervised settings, we evaluate our method on the NER task under the conditions of given unlabeled data only and unlabeled data plus a knowledge base. The results show that our method can consistently outperform the baselines, particularly when the given gold training data are less.

pdf bib
APE: Argument Pair Extraction from Peer Review and Rebuttal via Multi-task Learning
Liying Cheng | Lidong Bing | Qian Yu | Wei Lu | Luo Si
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Peer review and rebuttal, with rich interactions and argumentative discussions in between, are naturally a good resource to mine arguments. However, few works study both of them simultaneously. In this paper, we introduce a new argument pair extraction (APE) task on peer review and rebuttal in order to study the contents, the structure and the connections between them. We prepare a challenging dataset that contains 4,764 fully annotated review-rebuttal passage pairs from an open review platform to facilitate the study of this task. To automatically detect argumentative propositions and extract argument pairs from this corpus, we cast it as the combination of a sequence labeling task and a text relation classification task. Thus, we propose a multitask learning framework based on hierarchical LSTM networks. Extensive experiments and analysis demonstrate the effectiveness of our multi-task framework, and also show the challenges of the new task as well as motivate future research directions.

pdf bib
Feature Adaptation of Pre-Trained Language Models across Languages and Domains with Robust Self-Training
Hai Ye | Qingyu Tan | Ruidan He | Juntao Li | Hwee Tou Ng | Lidong Bing
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Adapting pre-trained language models (PrLMs) (e.g., BERT) to new domains has gained much attention recently. Instead of fine-tuning PrLMs as done in most previous work, we investigate how to adapt the features of PrLMs to new domains without fine-tuning. We explore unsupervised domain adaptation (UDA) in this paper. With the features from PrLMs, we adapt the models trained with labeled data from the source domain to the unlabeled target domain. Self-training is widely used for UDA, and it predicts pseudo labels on the target domain data for training. However, the predicted pseudo labels inevitably include noise, which will negatively affect training a robust model. To improve the robustness of self-training, in this paper we present class-aware feature self-distillation (CFd) to learn discriminative features from PrLMs, in which PrLM features are self-distilled into a feature adaptation module and the features from the same class are more tightly clustered. We further extend CFd to a cross-language setting, in which language discrepancy is studied. Experiments on two monolingual and multilingual Amazon review datasets show that CFd can consistently improve the performance of self-training in cross-domain and cross-language settings.

pdf bib
Partially-Aligned Data-to-Text Generation with Distant Supervision
Zihao Fu | Bei Shi | Wai Lam | Lidong Bing | Zhiyuan Liu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The Data-to-Text task aims to generate human-readable text for describing some given structured data enabling more interpretability. However, the typical generation task is confined to a few particular domains since it requires well-aligned data which is difficult and expensive to obtain. Using partially-aligned data is an alternative way of solving the dataset scarcity problem. This kind of data is much easier to obtain since it can be produced automatically. However, using this kind of data induces the over-generation problem posing difficulties for existing models, which tends to add unrelated excerpts during the generation procedure. In order to effectively utilize automatically annotated partially-aligned datasets, we extend the traditional generation task to a refined task called Partially-Aligned Data-to-Text Generation (PADTG) which is more practical since it utilizes automatically annotated data for training and thus considerably expands the application domains. To tackle this new task, we propose a novel distant supervision generation framework. It firstly estimates the input data’s supportiveness for each target word with an estimator and then applies a supportiveness adaptor and a rebalanced beam search to harness the over-generation problem in the training and generation phases respectively. We also contribute a partially-aligned dataset (The data and source code of this paper can be obtained from https://github.com/fuzihaofzh/distant_supervision_nlg) by sampling sentences from Wikipedia and automatically extracting corresponding KB triples for each sentence from Wikidata. The experimental results show that our framework outperforms all baseline models as well as verify the feasibility of utilizing partially-aligned data.

2019

pdf bib
An Integrated Approach for Keyphrase Generation via Exploring the Power of Retrieval and Extraction
Wang Chen | Hou Pong Chan | Piji Li | Lidong Bing | Irwin King
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

In this paper, we present a novel integrated approach for keyphrase generation (KG). Unlike previous works which are purely extractive or generative, we first propose a new multi-task learning framework that jointly learns an extractive model and a generative model. Besides extracting keyphrases, the output of the extractive model is also employed to rectify the copy probability distribution of the generative model, such that the generative model can better identify important contents from the given document. Moreover, we retrieve similar documents with the given document from training data and use their associated keyphrases as external knowledge for the generative model to produce more accurate keyphrases. For further exploiting the power of extraction and retrieval, we propose a neural-based merging module to combine and re-rank the predicted keyphrases from the enhanced generative model, the extractive model, and the retrieved keyphrases. Experiments on the five KG benchmarks demonstrate that our integrated approach outperforms the state-of-the-art methods.

pdf bib
Using Customer Service Dialogues for Satisfaction Analysis with Context-Assisted Multiple Instance Learning
Kaisong Song | Lidong Bing | Wei Gao | Jun Lin | Lujun Zhao | Jiancheng Wang | Changlong Sun | Xiaozhong Liu | Qiong Zhang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Customers ask questions and customer service staffs answer their questions, which is the basic service model via multi-turn customer service (CS) dialogues on E-commerce platforms. Existing studies fail to provide comprehensive service satisfaction analysis, namely satisfaction polarity classification (e.g., well satisfied, met and unsatisfied) and sentimental utterance identification (e.g., positive, neutral and negative). In this paper, we conduct a pilot study on the task of service satisfaction analysis (SSA) based on multi-turn CS dialogues. We propose an extensible Context-Assisted Multiple Instance Learning (CAMIL) model to predict the sentiments of all the customer utterances and then aggregate those sentiments into service satisfaction polarity. After that, we propose a novel Context Clue Matching Mechanism (CCMM) to enhance the representations of all customer utterances with their matched context clues, i.e., sentiment and reasoning clues. We construct two CS dialogue datasets from a top E-commerce platform. Extensive experimental results are presented and contrasted against a few previous models to demonstrate the efficacy of our model.

pdf bib
Tackling Long-Tailed Relations and Uncommon Entities in Knowledge Graph Completion
Zihao Wang | Kwunping Lai | Piji Li | Lidong Bing | Wai Lam
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

For large-scale knowledge graphs (KGs), recent research has been focusing on the large proportion of infrequent relations which have been ignored by previous studies. For example few-shot learning paradigm for relations has been investigated. In this work, we further advocate that handling uncommon entities is inevitable when dealing with infrequent relations. Therefore, we propose a meta-learning framework that aims at handling infrequent relations with few-shot learning and uncommon entities by using textual descriptions. We design a novel model to better extract key information from textual descriptions. Besides, we also develop a novel generative model in our framework to enhance the performance by generating extra triplets during the training stage. Experiments are conducted on two datasets from real-world KGs, and the results show that our framework outperforms previous methods when dealing with infrequent relations and their accompanying uncommon entities.

pdf bib
Hierarchical Pointer Net Parsing
Linlin Liu | Xiang Lin | Shafiq Joty | Simeng Han | Lidong Bing
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Transition-based top-down parsing with pointer networks has achieved state-of-the-art results in multiple parsing tasks, while having a linear time complexity. However, the decoder of these parsers has a sequential structure, which does not yield the most appropriate inductive bias for deriving tree structures. In this paper, we propose hierarchical pointer network parsers, and apply them to dependency and sentence-level discourse parsing tasks. Our results on standard benchmark datasets demonstrate the effectiveness of our approach, outperforming existing methods and setting a new state-of-the-art.

pdf bib
Who Is Speaking to Whom? Learning to Identify Utterance Addressee in Multi-Party Conversations
Ran Le | Wenpeng Hu | Mingyue Shang | Zhenjun You | Lidong Bing | Dongyan Zhao | Rui Yan
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Previous research on dialogue systems generally focuses on the conversation between two participants, yet multi-party conversations which involve more than two participants within one session bring up a more complicated but realistic scenario. In real multi- party conversations, we can observe who is speaking, but the addressee information is not always explicit. In this paper, we aim to tackle the challenge of identifying all the miss- ing addressees in a conversation session. To this end, we introduce a novel who-to-whom (W2W) model which models users and utterances in the session jointly in an interactive way. We conduct experiments on the benchmark Ubuntu Multi-Party Conversation Corpus and the experimental results demonstrate that our model outperforms baselines with consistent improvements.

pdf bib
Improving Question Generation With to the Point Context
Jingjing Li | Yifan Gao | Lidong Bing | Irwin King | Michael R. Lyu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Question generation (QG) is the task of generating a question from a reference sentence and a specified answer within the sentence. A major challenge in QG is to identify answer-relevant context words to finish the declarative-to-interrogative sentence transformation. Existing sequence-to-sequence neural models achieve this goal by proximity-based answer position encoding under the intuition that neighboring words of answers are of high possibility to be answer-relevant. However, such intuition may not apply to all cases especially for sentences with complex answer-relevant relations. Consequently, the performance of these models drops sharply when the relative distance between the answer fragment and other non-stop sentence words that also appear in the ground truth question increases. To address this issue, we propose a method to jointly model the unstructured sentence and the structured answer-relevant relation (extracted from the sentence in advance) for question generation. Specifically, the structured answer-relevant relation acts as the to the point context and it thus naturally helps keep the generated question to the point, while the unstructured sentence provides the full information. Extensive experiments show that to the point context helps our question generation model achieve significant improvements on several automatic evaluation metrics. Furthermore, our model is capable of generating diverse questions for a sentence which conveys multiple relations of its answer fragment.

pdf bib
Transferable End-to-End Aspect-based Sentiment Analysis with Selective Adversarial Learning
Zheng Li | Xin Li | Ying Wei | Lidong Bing | Yu Zhang | Qiang Yang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Joint extraction of aspects and sentiments can be effectively formulated as a sequence labeling problem. However, such formulation hinders the effectiveness of supervised methods due to the lack of annotated sequence data in many domains. To address this issue, we firstly explore an unsupervised domain adaptation setting for this task. Prior work can only use common syntactic relations between aspect and opinion words to bridge the domain gaps, which highly relies on external linguistic resources. To resolve it, we propose a novel Selective Adversarial Learning (SAL) method to align the inferred correlation vectors that automatically capture their latent relations. The SAL method can dynamically learn an alignment weight for each word such that more important words can possess higher alignment weights to achieve fine-grained (word-level) adaptation. Empirically, extensive experiments demonstrate the effectiveness of the proposed SAL method.

pdf bib
Semi-supervised Text Style Transfer: Cross Projection in Latent Space
Mingyue Shang | Piji Li | Zhenxin Fu | Lidong Bing | Dongyan Zhao | Shuming Shi | Rui Yan
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Text style transfer task requires the model to transfer a sentence of one style to another style while retaining its original content meaning, which is a challenging problem that has long suffered from the shortage of parallel data. In this paper, we first propose a semi-supervised text style transfer model that combines the small-scale parallel data with the large-scale nonparallel data. With these two types of training data, we introduce a projection function between the latent space of different styles and design two constraints to train it. We also introduce two other simple but effective semi-supervised methods to compare with. To evaluate the performance of the proposed methods, we build and release a novel style transfer dataset that alters sentences between the style of ancient Chinese poem and the modern Chinese.

pdf bib
A Knowledge Regularized Hierarchical Approach for Emotion Cause Analysis
Chuang Fan | Hongyu Yan | Jiachen Du | Lin Gui | Lidong Bing | Min Yang | Ruifeng Xu | Ruibin Mao
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Emotion cause analysis, which aims to identify the reasons behind emotions, is a key topic in sentiment analysis. A variety of neural network models have been proposed recently, however, these previous models mostly focus on the learning architecture with local textual information, ignoring the discourse and prior knowledge, which play crucial roles in human text comprehension. In this paper, we propose a new method to extract emotion cause with a hierarchical neural model and knowledge-based regularizations, which aims to incorporate discourse context information and restrain the parameters by sentiment lexicon and common knowledge. The experimental results demonstrate that our proposed method achieves the state-of-the-art performance on two public datasets in different languages (Chinese and English), outperforming a number of competitive baselines by at least 2.08% in F-measure.

pdf bib
Exploiting BERT for End-to-End Aspect-based Sentiment Analysis
Xin Li | Lidong Bing | Wenxuan Zhang | Wai Lam
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)

In this paper, we investigate the modeling power of contextualized embeddings from pre-trained language models, e.g. BERT, on the E2E-ABSA task. Specifically, we build a series of simple yet insightful neural baselines to deal with E2E-ABSA. The experimental results show that even with a simple linear classification layer, our BERT-based architecture can outperform state-of-the-art works. Besides, we also standardize the comparative study by consistently utilizing a hold-out validation dataset for model selection, which is largely ignored by previous works. Therefore, our work can serve as a BERT-based benchmark for E2E-ABSA.

2018

pdf bib
Transformation Networks for Target-Oriented Sentiment Classification
Xin Li | Lidong Bing | Wai Lam | Bei Shi
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Target-oriented sentiment classification aims at classifying sentiment polarities over individual opinion targets in a sentence. RNN with attention seems a good fit for the characteristics of this task, and indeed it achieves the state-of-the-art performance. After re-examining the drawbacks of attention mechanism and the obstacles that block CNN to perform well in this classification task, we propose a new model that achieves new state-of-the-art results on a few benchmarks. Instead of attention, our model employs a CNN layer to extract salient features from the transformed word representations originated from a bi-directional RNN layer. Between the two layers, we propose a component which first generates target-specific representations of words in the sentence, and then incorporates a mechanism for preserving the original contextual information from the RNN layer.

pdf bib
Learning Domain-Sensitive and Sentiment-Aware Word Embeddings
Bei Shi | Zihao Fu | Lidong Bing | Wai Lam
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Word embeddings have been widely used in sentiment classification because of their efficacy for semantic representations of words. Given reviews from different domains, some existing methods for word embeddings exploit sentiment information, but they cannot produce domain-sensitive embeddings. On the other hand, some other existing methods can generate domain-sensitive word embeddings, but they cannot distinguish words with similar contexts but opposite sentiment polarity. We propose a new method for learning domain-sensitive and sentiment-aware embeddings that simultaneously capture the information of sentiment semantics and domain sensitivity of individual words. Our method can automatically determine and produce domain-common embeddings and domain-specific embeddings. The differentiation of domain-common and domain-specific words enables the advantage of data augmentation of common semantics from multiple domains and capture the varied semantics of specific words from different domains at the same time. Experimental results show that our model provides an effective way to learn domain-sensitive and sentiment-aware word embeddings which benefit sentiment classification at both sentence level and lexicon term level.

pdf bib
Hybrid Neural Attention for Agreement/Disagreement Inference in Online Debates
Di Chen | Jiachen Du | Lidong Bing | Ruifeng Xu
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Inferring the agreement/disagreement relation in debates, especially in online debates, is one of the fundamental tasks in argumentation mining. The expressions of agreement/disagreement usually rely on argumentative expressions in text as well as interactions between participants in debates. Previous works usually lack the capability of jointly modeling these two factors. To alleviate this problem, this paper proposes a hybrid neural attention model which combines self and cross attention mechanism to locate salient part from textual context and interaction between users. Experimental results on three (dis)agreement inference datasets show that our model outperforms the state-of-the-art models.

pdf bib
Estimating Marginal Probabilities of n-grams for Recurrent Neural Language Models
Thanapon Noraset | Doug Downey | Lidong Bing
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Recurrent neural network language models (RNNLMs) are the current standard-bearer for statistical language modeling. However, RNNLMs only estimate probabilities for complete sequences of text, whereas some applications require context-independent phrase probabilities instead. In this paper, we study how to compute an RNNLM’s em marginal probability: the probability that the model assigns to a short sequence of text when the preceding context is not known. We introduce a simple method of altering the RNNLM training to make the model more accurate at marginal estimation. Our experiments demonstrate that the technique is effective compared to baselines including the traditional RNNLM probability and an importance sampling approach. Finally, we show how we can use the marginal estimation to improve an RNNLM by training the marginals to match n-gram probabilities from a larger corpus.

pdf bib
Variational Autoregressive Decoder for Neural Response Generation
Jiachen Du | Wenjie Li | Yulan He | Ruifeng Xu | Lidong Bing | Xuan Wang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Combining the virtues of probability graphic models and neural networks, Conditional Variational Auto-encoder (CVAE) has shown promising performance in applications such as response generation. However, existing CVAE-based models often generate responses from a single latent variable which may not be sufficient to model high variability in responses. To solve this problem, we propose a novel model that sequentially introduces a series of latent variables to condition the generation of each word in the response sequence. In addition, the approximate posteriors of these latent variables are augmented with a backward Recurrent Neural Network (RNN), which allows the latent variables to capture long-term dependencies of future tokens in generation. To facilitate training, we supplement our model with an auxiliary objective that predicts the subsequent bag of words. Empirical experiments conducted on Opensubtitle and Reddit datasets show that the proposed model leads to significant improvement on both relevance and diversity over state-of-the-art baselines.

pdf bib
QuaSE: Sequence Editing under Quantifiable Guidance
Yi Liao | Lidong Bing | Piji Li | Shuming Shi | Wai Lam | Tong Zhang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We propose the task of Quantifiable Sequence Editing (QuaSE): editing an input sequence to generate an output sequence that satisfies a given numerical outcome value measuring a certain property of the sequence, with the requirement of keeping the main content of the input sequence. For example, an input sequence could be a word sequence, such as review sentence and advertisement text. For a review sentence, the outcome could be the review rating; for an advertisement, the outcome could be the click-through rate. The major challenge in performing QuaSE is how to perceive the outcome-related wordings, and only edit them to change the outcome. In this paper, the proposed framework contains two latent factors, namely, outcome factor and content factor, disentangled from the input sentence to allow convenient editing to change the outcome and keep the content. Our framework explores the pseudo-parallel sentences by modeling their content similarity and outcome differences to enable a better disentanglement of the latent factors, which allows generating an output to better satisfy the desired outcome and keep the content. The dual reconstruction structure further enhances the capability of generating expected output by exploiting the couplings of latent factors of pseudo-parallel sentences. For evaluation, we prepared a dataset of Yelp review sentences with the ratings as outcome. Extensive experimental results are reported and discussed to elaborate the peculiarities of our framework.

2017

pdf bib
Recurrent Attention Network on Memory for Aspect Sentiment Analysis
Peng Chen | Zhongqian Sun | Lidong Bing | Wei Yang
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

We propose a novel framework based on neural networks to identify the sentiment of opinion targets in a comment/review. Our framework adopts multiple-attention mechanism to capture sentiment features separated by a long distance, so that it is more robust against irrelevant information. The results of multiple attentions are non-linearly combined with a recurrent neural network, which strengthens the expressive power of our model for handling more complications. The weighted-memory mechanism not only helps us avoid the labor-intensive feature engineering work, but also provides a tailor-made memory for different opinion targets of a sentence. We examine the merit of our model on four datasets: two are from SemEval2014, i.e. reviews of restaurants and laptops; a twitter dataset, for testing its performance on social media data; and a Chinese news comment dataset, for testing its language sensitivity. The experimental results show that our model consistently outperforms the state-of-the-art methods on different types of data.

pdf bib
Cascaded Attention based Unsupervised Information Distillation for Compressive Summarization
Piji Li | Wai Lam | Lidong Bing | Weiwei Guo | Hang Li
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

When people recall and digest what they have read for writing summaries, the important content is more likely to attract their attention. Inspired by this observation, we propose a cascaded attention based unsupervised model to estimate the salience information from the text for compressive multi-document summarization. The attention weights are learned automatically by an unsupervised data reconstruction framework which can capture the sentence salience. By adding sparsity constraints on the number of output vectors, we can generate condensed information which can be treated as word salience. Fine-grained and coarse-grained sentence compression strategies are incorporated to produce compressive summaries. Experiments on some benchmark data sets show that our framework achieves better results than the state-of-the-art methods.

pdf bib
Deep Recurrent Generative Decoder for Abstractive Text Summarization
Piji Li | Wai Lam | Lidong Bing | Zihao Wang
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

We propose a new framework for abstractive text summarization based on a sequence-to-sequence oriented encoder-decoder model equipped with a deep recurrent generative decoder (DRGN). Latent structure information implied in the target summaries is learned based on a recurrent latent random model for improving the summarization quality. Neural variational inference is employed to address the intractable posterior inference for the recurrent latent variables. Abstractive summaries are generated based on both the generative latent variables and the discriminative deterministic states. Extensive experiments on some benchmark datasets in different languages show that DRGN achieves improvements over the state-of-the-art methods.

pdf bib
Reader-Aware Multi-Document Summarization: An Enhanced Model and The First Dataset
Piji Li | Lidong Bing | Wai Lam
Proceedings of the Workshop on New Frontiers in Summarization

We investigate the problem of reader-aware multi-document summarization (RA-MDS) and introduce a new dataset for this problem. To tackle RA-MDS, we extend a variational auto-encodes (VAEs) based MDS framework by jointly considering news documents and reader comments. To conduct evaluation for summarization performance, we prepare a new dataset. We describe the methods for data collection, aspect annotation, and summary writing as well as scrutinizing by experts. Experimental results show that reader comments can improve the summarization performance, which also demonstrates the usefulness of the proposed dataset.

2016

pdf bib
Using Graphs of Classifiers to Impose Constraints on Semi-supervised Relation Extraction
Lidong Bing | William Cohen | Bhuwan Dhingra | Richard Wang
Proceedings of the 5th Workshop on Automated Knowledge Base Construction

pdf bib
Detecting Common Discussion Topics Across Culture From News Reader Comments
Bei Shi | Wai Lam | Lidong Bing | Yinqing Xu
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2015

pdf bib
Improving Distant Supervision for Information Extraction Using Label Propagation Through Lists
Lidong Bing | Sneha Chaudhari | Richard Wang | William Cohen
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
Abstractive Multi-Document Summarization via Phrase Selection and Merging
Lidong Bing | Piji Li | Yi Liao | Wai Lam | Weiwei Guo | Rebecca Passonneau
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Search
Co-authors