Luca Soldaini


2024

pdf bib
When do Generative Query and Document Expansions Fail? A Comprehensive Study Across Methods, Retrievers, and Datasets
Orion Weller | Kyle Lo | David Wadden | Dawn Lawrie | Benjamin Van Durme | Arman Cohan | Luca Soldaini
Findings of the Association for Computational Linguistics: EACL 2024

Using large language models (LMs) for query or document expansion can improve generalization in information retrieval. However, it is unknown whether these techniques are universally beneficial or only effective in specific settings, such as for particular retrieval models, dataset domains, or query types. To answer this, we conduct the first comprehensive analysis of LM-based expansion. We find that there exists a strong negative correlation between retriever performance and gains from expansion: expansion improves scores for weaker models, but generally harms stronger models. We show this trend holds across a set of eleven expansion techniques, twelve datasets with diverse distribution shifts, and twenty-four retrieval models. Through qualitative error analysis, we hypothesize that although expansions provide extra information (potentially improving recall), they add additional noise that makes it difficult to discern between the top relevant documents (thus introducing false positives). Our results suggest the following recipe: use expansions for weaker models or when the target dataset significantly differs from training corpus in format; otherwise, avoid expansions to keep the relevance signal clear.

pdf bib
KIWI: A Dataset of Knowledge-Intensive Writing Instructions for Answering Research Questions
Fangyuan Xu | Kyle Lo | Luca Soldaini | Bailey Kuehl | Eunsol Choi | David Wadden
Findings of the Association for Computational Linguistics ACL 2024

Large language models (LLMs) adapted to follow user instructions are now widely deployed as conversational agents. In this work, we examine one increasingly common instruction-following task: providing writing assistance to compose a long-form answer. To evaluate the capabilities of current LLMs on this task, we construct KIWI, a dataset of knowledge-intensive writing instructions in the scientific domain. Given a research question, an initial model-generated answer and a set of relevant papers, an expert annotator iteratively issues instructions for the model to revise and improve its answer. We collect 1,260 interaction turns from 234 interaction sessions with three state-of-the-art LLMs. Each turn includes a user instruction, a model response, and a human evaluation of the model response. Through a detailed analysis of the collected responses, we find that all models struggle to incorporate new information into an existing answer, and to perform precise and unambiguous edits. Further, we find that models struggle to judge whether their outputs successfully followed user instructions, with accuracy at least 10 points short of human agreement. Our findings indicate that KIWI will be a valuable resource to measure progress and improve LLMs’ instruction-following capabilities for knowledge intensive writing tasks.

pdf bib
AboutMe: Using Self-Descriptions in Webpages to Document the Effects of English Pretraining Data Filters
Li Lucy | Suchin Gururangan | Luca Soldaini | Emma Strubell | David Bamman | Lauren Klein | Jesse Dodge
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models’ (LLMs) abilities are drawn from their pretraining data, and model development begins with data curation. However, decisions around what data is retained or removed during this initial stage are under-scrutinized. In our work, we ground web text, which is a popular pretraining data source, to its social and geographic contexts. We create a new dataset of 10.3 million self-descriptions of website creators, and extract information about who they are and where they are from: their topical interests, social roles, and geographic affiliations. Then, we conduct the first study investigating how ten “quality” and English language identification (langID) filters affect webpages that vary along these social dimensions. Our experiments illuminate a range of implicit preferences in data curation: we show that some quality classifiers act like topical domain filters, and langID can overlook English content from some regions of the world. Overall, we hope that our work will encourage a new line of research on pretraining data curation practices and its social implications.

pdf bib
Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research
Luca Soldaini | Rodney Kinney | Akshita Bhagia | Dustin Schwenk | David Atkinson | Russell Authur | Ben Bogin | Khyathi Chandu | Jennifer Dumas | Yanai Elazar | Valentin Hofmann | Ananya Jha | Sachin Kumar | Li Lucy | Xinxi Lyu | Nathan Lambert | Ian Magnusson | Jacob Morrison | Niklas Muennighoff | Aakanksha Naik | Crystal Nam | Matthew Peters | Abhilasha Ravichander | Kyle Richardson | Zejiang Shen | Emma Strubell | Nishant Subramani | Oyvind Tafjord | Evan Walsh | Luke Zettlemoyer | Noah Smith | Hannaneh Hajishirzi | Iz Beltagy | Dirk Groeneveld | Jesse Dodge | Kyle Lo
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Information about pretraining corpora used to train the current best-performing language models is seldom discussed: commercial models rarely detail their data, and even open models are often released without accompanying training data or recipes to reproduce them. As a result, it is challenging to conduct and advance scientific research on language modeling, such as understanding how training data impacts model capabilities and limitations. To facilitate scientific research on language model pretraining, we curate and release Dolma, a three-trillion-token English corpus, built from a diverse mixture of web content, scientific papers, code, public-domain books, social media, and encyclopedic materials. We extensively document Dolma, including its design principles, details about its construction, and a summary of its contents. We present analyses and experimental results on intermediate states of Dolma to share what we have learned about important data curation practices. Finally, we open-source our data curation toolkit to enable reproduction of our work as well as support further research in large-scale data curation.

pdf bib
OLMo: Accelerating the Science of Language Models
Dirk Groeneveld | Iz Beltagy | Evan Walsh | Akshita Bhagia | Rodney Kinney | Oyvind Tafjord | Ananya Jha | Hamish Ivison | Ian Magnusson | Yizhong Wang | Shane Arora | David Atkinson | Russell Authur | Khyathi Chandu | Arman Cohan | Jennifer Dumas | Yanai Elazar | Yuling Gu | Jack Hessel | Tushar Khot | William Merrill | Jacob Morrison | Niklas Muennighoff | Aakanksha Naik | Crystal Nam | Matthew Peters | Valentina Pyatkin | Abhilasha Ravichander | Dustin Schwenk | Saurabh Shah | William Smith | Emma Strubell | Nishant Subramani | Mitchell Wortsman | Pradeep Dasigi | Nathan Lambert | Kyle Richardson | Luke Zettlemoyer | Jesse Dodge | Kyle Lo | Luca Soldaini | Noah Smith | Hannaneh Hajishirzi
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Language models (LMs) have become ubiquitous in both NLP research and in commercial product offerings. As their commercial importance has surged, the most powerful models have become closed off, gated behind proprietary interfaces, with important details of their training data, architectures, and development undisclosed. Given the importance of these details in scientifically studying these models, including their biases and potential risks, we believe it is essential for the research community to have access to powerful, truly open LMs. To this end, we have built OLMo, a competitive, truly Open Language Model, to enable the scientific study of language models. Unlike most prior efforts that have only released model weights and inference code, we release OLMo alongside open training data and training and evaluation code. We hope this release will empower the open research community and inspire a new wave of innovation.

2023

pdf bib
Embedding Recycling for Language Models
Jon Saad-Falcon | Amanpreet Singh | Luca Soldaini | Mike D’Arcy | Arman Cohan | Doug Downey
Findings of the Association for Computational Linguistics: EACL 2023

Real-world applications of neural language models often involve running many different models over the same corpus. The high computational cost of these runs has led to interest in techniques that can reuse the contextualized embeddings produced in previous runs to speed training and inference of future ones. We refer to this approach as embedding recycling (ER). While multiple ER techniques have been proposed, their practical effectiveness is still unknown because existing evaluations consider very few models and do not adequately account for overhead costs. We perform an extensive evaluation of ER across eight different models (17 to 900 million parameters) and fourteen tasks in English. We show how a simple ER technique that caches activations from an intermediate layer of a pretrained model, and learns task-specific adapters on the later layers, is broadly effective. For the best-performing baseline in our experiments (DeBERTa-v2 XL), adding a precomputed cache results in a 90% speedup during training and 87-91% speedup for inference, with negligible impact on accuracy. Our analysis reveals important areas of future work.

pdf bib
Open Domain Multi-document Summarization: A Comprehensive Study of Model Brittleness under Retrieval
John Giorgi | Luca Soldaini | Bo Wang | Gary Bader | Kyle Lo | Lucy Wang | Arman Cohan
Findings of the Association for Computational Linguistics: EMNLP 2023

Multi-document summarization (MDS) assumes a set of topic-related documents are provided as input. In practice, this document set is not always available; it would need to be retrieved given an information need, i.e. a question or topic statement, a setting we dub “open-domain’ MDS. We study this more challenging setting by formalizing the task and bootstrapping it using existing datasets, retrievers and summarizers. Via extensive automatic and human evaluation, we determine: (1) state-of-the-art summarizers suffer large reductions in performance when applied to open-domain MDS, (2) additional training in the open-domain setting can reduce this sensitivity to imperfect retrieval, and (3) summarizers are insensitive to the retrieval of duplicate documents and the order of retrieved documents, but highly sensitive to other errors, like the retrieval of irrelevant documents. Based on our results, we provide practical guidelines to enable future work on open-domain MDS, e.g. how to choose the number of retrieved documents to summarize. Our results suggest that new retrieval and summarization methods and annotated resources for training and evaluation are necessary for further progress in the open-domain setting.

pdf bib
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations
Danilo Croce | Luca Soldaini
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

pdf bib
A Question Answering Framework for Decontextualizing User-facing Snippets from Scientific Documents
Benjamin Newman | Luca Soldaini | Raymond Fok | Arman Cohan | Kyle Lo
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Many real-world applications (e.g., note taking, search) require extracting a sentence or paragraph from a document and showing that snippet to a human outside of the source document. Yet, users may find snippets difficult to understand as they lack context from the original document. In this work, we use language models to rewrite snippets from scientific documents to be read on their own. First, we define the requirements and challenges for this user-facing decontextualization task, such as clarifying where edits occur and handling references to other documents. Second, we propose a framework that decomposes the task into three stages: question generation, question answering, and rewriting. Using this framework, we collect gold decontextualizations from experienced scientific article readers. We then conduct a range of experiments across state-of-the-art commercial and open-source language models to identify how to best provide missing-but-relevant information to models for our task. Finally, we develop QaDecontext, a simple prompting strategy inspired by our framework that improves over end-to-end prompting. We conclude with analysis that finds, while rewriting is easy, question generation and answering remain challenging for today’s models.

pdf bib
PaperMage: A Unified Toolkit for Processing, Representing, and Manipulating Visually-Rich Scientific Documents
Kyle Lo | Zejiang Shen | Benjamin Newman | Joseph Chang | Russell Authur | Erin Bransom | Stefan Candra | Yoganand Chandrasekhar | Regan Huff | Bailey Kuehl | Amanpreet Singh | Chris Wilhelm | Angele Zamarron | Marti A. Hearst | Daniel Weld | Doug Downey | Luca Soldaini
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Despite growing interest in applying natural language processing (NLP) and computer vision (CV) models to the scholarly domain, scientific documents remain challenging to work with. They’re often in difficult-to-use PDF formats, and the ecosystem of models to process them is fragmented and incomplete. We introduce PaperMage, an open-source Python toolkit for analyzing and processing visually-rich, structured scientific documents. PaperMage offers clean and intuitive abstractions for seamlessly representing and manipulating both textual and visual document elements. PaperMage achieves this by integrating disparate state-of-the-art NLP and CV models into a unified framework, and provides turn-key recipes for common scientific document processing use-cases. PaperMage has powered multiple research prototypes of AI applications over scientific documents, along with Semantic Scholar’s large-scale production system for processing millions of PDFs. GitHub: https://github.com/allenai/papermage

2022

pdf bib
Knowledge Transfer from Answer Ranking to Answer Generation
Matteo Gabburo | Rik Koncel-Kedziorski | Siddhant Garg | Luca Soldaini | Alessandro Moschitti
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recent studies show that Question Answering (QA) based on Answer Sentence Selection (AS2) can be improved by generating an improved answer from the top-k ranked answer sentences (termed GenQA). This allows for synthesizing the information from multiple candidates into a concise, natural-sounding answer. However, creating large-scale supervised training data for GenQA models is very challenging. In this paper, we propose to train a GenQA model by transferring knowledge from a trained AS2 model, to overcome the aforementioned issue. First, we use an AS2 model to produce a ranking over answer candidates for a set of questions. Then, we use the top ranked candidate as the generation target, and the next k top ranked candidates as context for training a GenQA model. We also propose to use the AS2 model prediction scores for loss weighting and score-conditioned input/output shaping, to aid the knowledge transfer. Our evaluation on three public and one large industrial datasets demonstrates the superiority of our approach over the AS2 baseline, and GenQA trained using supervised data.

pdf bib
Pre-training Transformer Models with Sentence-Level Objectives for Answer Sentence Selection
Luca Di Liello | Siddhant Garg | Luca Soldaini | Alessandro Moschitti
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

An important task for designing QA systems is answer sentence selection (AS2): selecting the sentence containing (or constituting) the answer to a question from a set of retrieved relevant documents. In this paper, we propose three novel sentence-level transformer pre-training objectives that incorporate paragraph-level semantics within and across documents, to improve the performance of transformers for AS2, and mitigate the requirement of large labeled datasets. Specifically, the model is tasked to predict whether: (i) two sentences are extracted from the same paragraph, (ii) a given sentence is extracted from a given paragraph, and (iii) two paragraphs are extracted from the same document. Our experiments on three public and one industrial AS2 datasets demonstrate the empirical superiority of our pre-trained transformers over baseline models such as RoBERTa and ELECTRA for AS2.

pdf bib
Paragraph-based Transformer Pre-training for Multi-Sentence Inference
Luca Di Liello | Siddhant Garg | Luca Soldaini | Alessandro Moschitti
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Inference tasks such as answer sentence selection (AS2) or fact verification are typically solved by fine-tuning transformer-based models as individual sentence-pair classifiers. Recent studies show that these tasks benefit from modeling dependencies across multiple candidate sentences jointly. In this paper, we first show that popular pre-trained transformers perform poorly when used for fine-tuning on multi-candidate inference tasks. We then propose a new pre-training objective that models the paragraph-level semantics across multiple input sentences. Our evaluation on three AS2 and one fact verification datasets demonstrates the superiority of our pre-training technique over the traditional ones for transformers used as joint models for multi-candidate inference tasks, as well as when used as cross-encoders for sentence-pair formulations of these tasks.

pdf bib
Cross-Lingual Open-Domain Question Answering with Answer Sentence Generation
Benjamin Muller | Luca Soldaini | Rik Koncel-Kedziorski | Eric Lind | Alessandro Moschitti
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Open-Domain Generative Question Answering has achieved impressive performance in English by combining document-level retrieval with answer generation. These approaches, which we refer to as GenQA, can generate complete sentences, effectively answering both factoid and non-factoid questions. In this paper, we extend to the multilingual and cross-lingual settings. For this purpose, we first introduce GenTyDiQA, an extension of the TyDiQA dataset with well-formed and complete answers for Arabic, Bengali, English, Japanese, and Russian. Based on GenTyDiQA, we design a cross-lingual generative model that produces full-sentence answers by exploiting passages written in multiple languages, including languages different from the question. Our cross-lingual generative system outperforms answer sentence selection baselines for all 5 languages and monolingual generative pipelines for three out of five languages studied.

pdf bib
Ensemble Transformer for Efficient and Accurate Ranking Tasks: an Application to Question Answering Systems
Yoshitomo Matsubara | Luca Soldaini | Eric Lind | Alessandro Moschitti
Findings of the Association for Computational Linguistics: EMNLP 2022

Large transformer models can highly improve Answer Sentence Selection (AS2) tasks, but their high computational costs prevent their use in many real-world applications. In this paper, we explore the following research question: How can we make the AS2 models more accurate without significantly increasing their model complexity? To address the question, we propose a Multiple Heads Student architecture (named CERBERUS), an efficient neural network designed to distill an ensemble of large transformers into a single smaller model. CERBERUS consists of two components: a stack of transformer layers that is used to encode inputs, and a set of ranking heads; unlike traditional distillation technique, each of them is trained by distilling a different large transformer architecture in a way that preserves the diversity of the ensemble members. The resulting model captures the knowledge of heterogeneous transformer models by using just a few extra parameters. We show the effectiveness of CERBERUS on three English datasets for AS2; our proposed approach outperforms all single-model distillations we consider, rivaling the state-of-the-art large AS2 models that have 2.7× more parameters and run 2.5× slower. Code for our model is available at https://github.com/amazon-research/wqa-cerberus.

2021

pdf bib
Answer Generation for Retrieval-based Question Answering Systems
Chao-Chun Hsu | Eric Lind | Luca Soldaini | Alessandro Moschitti
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Modeling Context in Answer Sentence Selection Systems on a Latency Budget
Rujun Han | Luca Soldaini | Alessandro Moschitti
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Answer Sentence Selection (AS2) is an efficient approach for the design of open-domain Question Answering (QA) systems. In order to achieve low latency, traditional AS2 models score question-answer pairs individually, ignoring any information from the document each potential answer was extracted from. In contrast, more computationally expensive models designed for machine reading comprehension tasks typically receive one or more passages as input, which often results in better accuracy. In this work, we present an approach to efficiently incorporate contextual information in AS2 models. For each answer candidate, we first use unsupervised similarity techniques to extract relevant sentences from its source document, which we then feed into an efficient transformer architecture fine-tuned for AS2. Our best approach, which leverages a multi-way attention architecture to efficiently encode context, improves 6% to 11% over non-contextual state of the art in AS2 with minimal impact on system latency. All experiments in this work were conducted in English.

2020

pdf bib
The Cascade Transformer: an Application for Efficient Answer Sentence Selection
Luca Soldaini | Alessandro Moschitti
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Large transformer-based language models have been shown to be very effective in many classification tasks. However, their computational complexity prevents their use in applications requiring the classification of a large set of candidates. While previous works have investigated approaches to reduce model size, relatively little attention has been paid to techniques to improve batch throughput during inference. In this paper, we introduce the Cascade Transformer, a simple yet effective technique to adapt transformer-based models into a cascade of rankers. Each ranker is used to prune a subset of candidates in a batch, thus dramatically increasing throughput at inference time. Partial encodings from the transformer model are shared among rerankers, providing further speed-up. When compared to a state-of-the-art transformer model, our approach reduces computation by 37% with almost no impact on accuracy, as measured on two English Question Answering datasets.

pdf bib
Multi-task Learning of Spoken Language Understanding by Integrating N-Best Hypotheses with Hierarchical Attention
Mingda Li | Xinyue Liu | Weitong Ruan | Luca Soldaini | Wael Hamza | Chengwei Su
Proceedings of the 28th International Conference on Computational Linguistics: Industry Track

Currently, in spoken language understanding (SLU) systems, the automatic speech recognition (ASR) module produces multiple interpretations (or hypotheses) for the input audio signal and the natural language understanding (NLU) module takes the one with the highest confidence score for domain or intent classification. However, the interpretations can be noisy, and solely relying on one interpretation can cause information loss. To address the problem, many research works attempt to rerank the interpretations for a better choice while some recent works get better performance by integrating all the hypotheses during prediction. In this paper, we follow the way of integrating hypotheses but strengthen the training mode by involving more tasks, some of which may be not in existing tasks of NLU but relevant, via multi-task learning or transfer learning. Moreover, we propose the Hierarchical Attention Mechanism (HAM) to further improve the performance with the acoustic-model features like confidence scores, which are ignored in the current hypotheses integration models. The experimental results show that compared to the standard estimation with one hypothesis, the multi-task learning with HAM can improve the domain and intent classification by relatively 19% and 37%, which are much higher than improvements with current integration or reranking methods. To illustrate the cause of improvements brought by our model, we decode the hidden representations of some utterance examples and compare the generated texts with hypotheses and transcripts. The comparison shows that our model could recover the transcription by integrating the fragmented information among hypotheses and identifying the frequent error patterns of the ASR module, and even rewrite the query for a better understanding, which reveals the characteristic of multi-task learning of broadcasting knowledge.

2018

pdf bib
RSDD-Time: Temporal Annotation of Self-Reported Mental Health Diagnoses
Sean MacAvaney | Bart Desmet | Arman Cohan | Luca Soldaini | Andrew Yates | Ayah Zirikly | Nazli Goharian
Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic

Self-reported diagnosis statements have been widely employed in studying language related to mental health in social media. However, existing research has largely ignored the temporality of mental health diagnoses. In this work, we introduce RSDD-Time: a new dataset of 598 manually annotated self-reported depression diagnosis posts from Reddit that include temporal information about the diagnosis. Annotations include whether a mental health condition is present and how recently the diagnosis happened. Furthermore, we include exact temporal spans that relate to the date of diagnosis. This information is valuable for various computational methods to examine mental health through social media because one’s mental health state is not static. We also test several baseline classification and extraction approaches, which suggest that extracting temporal information from self-reported diagnosis statements is challenging.

pdf bib
Helping or Hurting? Predicting Changes in Users’ Risk of Self-Harm Through Online Community Interactions
Luca Soldaini | Timothy Walsh | Arman Cohan | Julien Han | Nazli Goharian
Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic

In recent years, online communities have formed around suicide and self-harm prevention. While these communities offer support in moment of crisis, they can also normalize harmful behavior, discourage professional treatment, and instigate suicidal ideation. In this work, we focus on how interaction with others in such a community affects the mental state of users who are seeking support. We first build a dataset of conversation threads between users in a distressed state and community members offering support. We then show how to construct a classifier to predict whether distressed users are helped or harmed by the interactions in the thread, and we achieve a macro-F1 score of up to 0.69.

pdf bib
SMHD: a Large-Scale Resource for Exploring Online Language Usage for Multiple Mental Health Conditions
Arman Cohan | Bart Desmet | Andrew Yates | Luca Soldaini | Sean MacAvaney | Nazli Goharian
Proceedings of the 27th International Conference on Computational Linguistics

Mental health is a significant and growing public health concern. As language usage can be leveraged to obtain crucial insights into mental health conditions, there is a need for large-scale, labeled, mental health-related datasets of users who have been diagnosed with one or more of such conditions. In this paper, we investigate the creation of high-precision patterns to identify self-reported diagnoses of nine different mental health conditions, and obtain high-quality labeled data without the need for manual labelling. We introduce the SMHD (Self-reported Mental Health Diagnoses) dataset and make it available. SMHD is a novel large dataset of social media posts from users with one or multiple mental health conditions along with matched control users. We examine distinctions in users’ language, as measured by linguistic and psychological variables. We further explore text classification methods to identify individuals with mental conditions through their language.

pdf bib
GU IRLAB at SemEval-2018 Task 7: Tree-LSTMs for Scientific Relation Classification
Sean MacAvaney | Luca Soldaini | Arman Cohan | Nazli Goharian
Proceedings of the 12th International Workshop on Semantic Evaluation

SemEval 2018 Task 7 focuses on relation extraction and classification in scientific literature. In this work, we present our tree-based LSTM network for this shared task. Our approach placed 9th (of 28) for subtask 1.1 (relation classification), and 5th (of 20) for subtask 1.2 (relation classification with noisy entities). We also provide an ablation study of features included as input to the network.

2015

pdf bib
Matching Citation Text and Cited Spans in Biomedical Literature: a Search-Oriented Approach
Arman Cohan | Luca Soldaini | Nazli Goharian
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Search
Co-authors