Maksym Del


2023

pdf bib
True Detective: A Deep Abductive Reasoning Benchmark Undoable for GPT-3 and Challenging for GPT-4
Maksym Del | Mark Fishel
Proceedings of the 12th Joint Conference on Lexical and Computational Semantics (*SEM 2023)

Large language models (LLMs) have demonstrated solid zero-shot reasoning capabilities, which is reflected in their performance on the current test tasks. This calls for a more challenging benchmark requiring highly advanced reasoning ability to be solved. In this paper, we introduce such a benchmark, consisting of 191 long-form (1200 words on average) mystery narratives constructed as detective puzzles. Puzzles are sourced from the “5 Minute Mystery” platform and include a multiple-choice question for evaluation. Only 47% of humans solve a puzzle successfully on average, while the best human solvers achieve over 80% success rate. We show that GPT-3 models barely outperform random on this benchmark (with 28% accuracy) while state-of-the-art GPT-4 solves only 38% of puzzles. This indicates that there is still a significant gap in the deep reasoning abilities of LLMs and humans and highlights the need for further research in this area. Our work introduces a challenging benchmark for future studies on reasoning in language models and contributes to a better understanding of the limits of LLMs’ abilities.

2022

pdf bib
Cross-lingual Similarity of Multilingual Representations Revisited
Maksym Del | Mark Fishel
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Related works used indexes like CKA and variants of CCA to measure the similarity of cross-lingual representations in multilingual language models. In this paper, we argue that assumptions of CKA/CCA align poorly with one of the motivating goals of cross-lingual learning analysis, i.e., explaining zero-shot cross-lingual transfer. We highlight what valuable aspects of cross-lingual similarity these indexes fail to capture and provide a motivating case study demonstrating the problem empirically. Then, we introduce Average Neuron-Wise Correlation (ANC) as a straightforward alternative that is exempt from the difficulties of CKA/CCA and is good specifically in a cross-lingual context. Finally, we use ANC to construct evidence that the previously introduced “first align, then predict” pattern takes place not only in masked language models (MLMs) but also in multilingual models with causal language modeling objectives (CLMs). Moreover, we show that the pattern extends to the scaled versions of the MLMs and CLMs (up to 85x original mBERT). Our code is publicly available at https://github.com/TartuNLP/xsim

2021

pdf bib
Translation Transformers Rediscover Inherent Data Domains
Maksym Del | Elizaveta Korotkova | Mark Fishel
Proceedings of the Sixth Conference on Machine Translation

Many works proposed methods to improve the performance of Neural Machine Translation (NMT) models in a domain/multi-domain adaptation scenario. However, an understanding of how NMT baselines represent text domain information internally is still lacking. Here we analyze the sentence representations learned by NMT Transformers and show that these explicitly include the information on text domains, even after only seeing the input sentences without domains labels. Furthermore, we show that this internal information is enough to cluster sentences by their underlying domains without supervision. We show that NMT models produce clusters better aligned to the actual domains compared to pre-trained language models (LMs). Notably, when computed on document-level, NMT cluster-to-domain correspondence nears 100%. We use these findings together with an approach to NMT domain adaptation using automatically extracted domains. Whereas previous work relied on external LMs for text clustering, we propose re-using the NMT model as a source of unsupervised clusters. We perform an extensive experimental study comparing two approaches across two data scenarios, three language pairs, and both sentence-level and document-level clustering, showing equal or significantly superior performance compared to LMs.

2018

pdf bib
Phrase-based Unsupervised Machine Translation with Compositional Phrase Embeddings
Maksym Del | Andre Tättar | Mark Fishel
Proceedings of the Third Conference on Machine Translation: Shared Task Papers

This paper describes the University of Tartu’s submission to the unsupervised machine translation track of WMT18 news translation shared task. We build several baseline translation systems for both directions of the English-Estonian language pair using monolingual data only; the systems belong to the phrase-based unsupervised machine translation paradigm where we experimented with phrase lengths of up to 3. As a main contribution, we performed a set of standalone experiments with compositional phrase embeddings as a substitute for phrases as individual vocabulary entries. Results show that reasonable n-gram vectors can be obtained by simply summing up individual word vectors which retains or improves the performance of phrase-based unsupervised machine tranlation systems while avoiding limitations of atomic phrase vectors.

2017

pdf bib
C-3MA: Tartu-Riga-Zurich Translation Systems for WMT17
Matīss Rikters | Chantal Amrhein | Maksym Del | Mark Fishel
Proceedings of the Second Conference on Machine Translation