In recent years, large pretrained models have been used in dialogue systems to improve successful task completion rates. However, lack of reasoning capabilities of dialogue platforms make it difficult to provide relevant and fluent responses, unless the designers of a conversational experience spend a considerable amount of time implementing these capabilities in external rule based modules. In this work, we propose a novel method to fine-tune pretrained transformer models such as Roberta and T5, to reason over a set of facts in a given dialogue context. Our method includes a synthetic data generation mechanism which helps the model learn logical relations, such as comparison between list of numerical values, inverse relations (and negation), inclusion and exclusion for categorical attributes, and application of a combination of attributes over both numerical and categorical values, and spoken form for numerical values, without need for additional training data. We show that the transformer based model can perform logical reasoning to answer questions when the dialogue context contains all the required information, otherwise it is able to extract appropriate constraints to pass to downstream components (e.g. a knowledge base) when partial information is available. We observe that transformer based models such as UnifiedQA-T5 can be fine-tuned to perform logical reasoning (such as numerical and categorical attributes’ comparison) over attributes seen at training time (e.g., accuracy of 90%+ for comparison of smaller than kmax=5 values over heldout test dataset).
Users interacting with voice assistants today need to phrase their requests in a very specific manner to elicit an appropriate response. This limits the user experience, and is partly due to the lack of reasoning capabilities of dialogue platforms and the hand-crafted rules that require extensive labor. One possible solution to improve user experience and relieve the manual efforts of designers is to build an end-to-end dialogue system that can do reasoning itself while perceiving user’s utterances. In this work, we propose a novel method to incorporate the knowledge reasoning capability into dialog systems in a more scalable and generalizable manner. Our proposed method allows a single transformer model to directly walk on a large-scale knowledge graph to generate responses. To the best of our knowledge, this is the first work to have transformer models generate responses by reasoning over differentiable knowledge graphs. We investigate the reasoning abilities of the proposed method on both task-oriented and domain-specific chit-chat dialogues. Empirical results show that this method can effectively and efficiently incorporate a knowledge graph into a dialogue system with fully-interpretable reasoning paths.
Traditional goal-oriented dialogue systems rely on various components such as natural language understanding, dialogue state tracking, policy learning and response generation. Training each component requires annotations which are hard to obtain for every new domain, limiting scalability of such systems. Similarly, rule-based dialogue systems require extensive writing and maintenance of rules and do not scale either. End-to-End dialogue systems, on the other hand, do not require module-specific annotations but need a large amount of data for training. To overcome these problems, in this demo, we present Alexa Conversations, a new approach for building goal-oriented dialogue systems that is scalable, extensible as well as data efficient. The components of this system are trained in a data-driven manner, but instead of collecting annotated conversations for training, we generate them using a novel dialogue simulator based on a few seed dialogues and specifications of APIs and entities provided by the developer. Our approach provides out-of-the-box support for natural conversational phenomenon like entity sharing across turns or users changing their mind during conversation without requiring developers to provide any such dialogue flows. We exemplify our approach using a simple pizza ordering task and showcase its value in reducing the developer burden for creating a robust experience. Finally, we evaluate our system using a typical movie ticket booking task integrated with live APIs and show that the dialogue simulator is an essential component of the system that leads to over 50% improvement in turn-level action signature prediction accuracy.
Speech-based virtual assistants, such as Amazon Alexa, Google assistant, and Apple Siri, typically convert users’ audio signals to text data through automatic speech recognition (ASR) and feed the text to downstream dialog models for natural language understanding and response generation. The ASR output is error-prone; however, the downstream dialog models are often trained on error-free text data, making them sensitive to ASR errors during inference time. To bridge the gap and make dialog models more robust to ASR errors, we leverage an ASR error simulator to inject noise into the error-free text data, and subsequently train the dialog models with the augmented data. Compared to other approaches for handling ASR errors, such as using ASR lattice or end-to-end methods, our data augmentation approach does not require any modification to the ASR or downstream dialog models; our approach also does not introduce any additional latency during inference time. We perform extensive experiments on benchmark data and show that our approach improves the performance of downstream dialog models in the presence of ASR errors, and it is particularly effective in the low-resource situations where there are constraints on model size or the training data is scarce.