In machine translation, historical models were incapable of handling longer contexts, so the lack of document-level datasets was less noticeable. Now, despite the emergence of long-sequence methods, we remain within a sentence-level paradigm and without data to adequately approach context-aware machine translation. Most large-scale datasets have been processed through a pipeline that discards document-level metadata. In this work, we reconstruct document-level information for three (ParaCrawl, News Commentary, and Europarl) large datasets in German, French, Spanish, Italian, Polish, and Portuguese (paired with English). We then introduce a document-level filtering technique as an alternative to traditional bitext filtering. We present this filtering with analysis to show that this method prefers context-consistent translations rather than those that may have been sentence-level machine translated. Last we train models on these longer contexts and demonstrate improvement in document-level translation without degradation of sentence-level translation. We release our dataset, ParaDocs, and resulting models as a resource to the community.
Ten years ago a single metric, BLEU, governed progress in machine translation research. For better or worse, there is no such consensus today, and consequently it is difficult for researchers to develop and retain intuitions about metric deltas that drove earlier research and deployment decisions. This paper investigates the “dynamic range” of a number of modern metrics in an effort to provide a collective understanding of the meaning of differences in scores both within and among metrics; in other words, we ask “what point difference x in metric y is required between two systems for humans to notice?”. We conduct our evaluation on a new large dataset, ToShip23, using it to discover deltas at which metrics achieve system-level differences that are meaningful to humans, which we measure by pairwise system accuracy. We additionally show that this method of establishing delta-accuracy is more stable than the standard use of statistical p-values in regards to testset size. Where data size permits, we also explore the effect of metric deltas and accuracy across finer-grained features such as translation direction, domain, and system closeness.
Reference-based metrics that operate at the sentence-level typically outperform quality estimation metrics, which have access only to the source and system output.This is unsurprising, since references resolve ambiguities that may be present in the source.In this paper, we investigate whether additional source context can effectively substitute for a reference.We present a metric named SLIDE (SLIding Document Evaluator), which operates on blocks of sentences. SLIDE leverages a moving window that slides over each document in the test set, feeding each chunk of sentences into an unmodified, off-the-shelf quality estimation model.We find that SLIDE obtains significantly higher pairwise system accuracy than its sentence-level baseline, in some cases even eliminating the gap with reference-base metrics.This suggests that source context may provide the same information as a human reference in disambiguating source ambiguities. This finding is especially pertinent for reference-free document-level evaluation, wherein SLIDE could provide higher-quality pairwise system assessments while only requiring document boundary annotations.
The ACL Anthology is a prime resource for research papers within computational linguistics and natural language processing, while continuing to be an open-source and community-driven project. Since Gildea et al. (2018) reported on its state and planned directions, the Anthology has seen major technical changes. We discuss what led to these changes and how they impact long-term maintainability and community engagement, describe which open-source data and software tools the Anthology currently provides, and provide a survey of literature that has used the Anthology as a main data source.
Many machine translation toolkits make use of a data preparation step wherein raw data is transformed into a tensor format that can be used directly by the trainer. This preparation step is increasingly at odds with modern research and development practices because this process produces a static, unchangeable version of the training data, making common training-time needs difficult (e.g., subword sampling), time-consuming (preprocessing with large data can take days), expensive (e.g., disk space), and cumbersome (managing experiment combinatorics). We propose an alternative approach that separates the generation of data from the consumption of that data. In this approach, there is no separate pre-processing step; data generation produces an infinite stream of permutations of the raw training data, which the trainer tensorizes and batches as it is consumed. Additionally, this data stream can be manipulated by a set of user-definable operators that provide on-the-fly modifications, such as data normalization, augmentation or filtering. We release an open-source toolkit, SOTASTREAM, that implements this approach: https://github.com/marian-nmt/sotastream. We show that it cuts training time, adds flexibility, reduces experiment management complexity, and reduces disk space, all without affecting the accuracy of the trained models.
Large Language Models (LLMs) such as GPT-3 have emerged as general-purpose language models capable of addressing many natural language generation or understanding tasks. On the task of Machine Translation (MT), multiple works have investigated few-shot prompting mechanisms to elicit better translations from LLMs. However, there has been relatively little investigation on how such translations differ qualitatively from the translations generated by standard Neural Machine Translation (NMT) models. In this work, we investigate these differences in terms of the literalness of translations produced by the two systems. Using literalness measures involving word alignment and monotonicity, we find that translations out of English (E-X) from GPTs tend to be less literal, while exhibiting similar or better scores on MT quality metrics. We demonstrate that this finding is borne out in human evaluations as well. We then show that these differences are especially pronounced when translating sentences that contain idiomatic expressions.
A major impediment to the transition to contextual machine translation is the absence of good evaluation metrics and test sets. Sentences that require context to be translated correctly are rare in test sets, reducing the utility of standard corpus-level metrics such as COMET or BLEU. On the other hand, datasets that annotate such sentences are also rare, small in scale, and available for only a few languages. To address this, we modernize, generalize, and extend previous annotation pipelines to produce MultiPro, a tool that identifies subsets of parallel documents containing sentences that require context to correctly translate five phenomena: gender, formality, and animacy for pronouns, verb phrase ellipsis, and ambiguous noun inflections. The input to the pipeline is a set of hand-crafted, per-language, linguistically-informed rules that select contextual sentence pairs using coreference, part-of-speech, and morphological features provided by state-of-the-art tools. We apply this pipeline to seven languages pairs (EN into and out-of DE, ES, FR, IT, PL, PT, and RU) and two datasets (OpenSubtitles and WMT test sets), and validate its performance using both overlap with previous work and its ability to discriminate a contextual MT system from a sentence-based one. We release the MultiPro pipeline and data as open source.
We describe our submission of a new metric, SLIDE (Raunak et al., 2023), to the WMT 2023 metrics task. SLIDE is a reference-free quality-estimation metric that works by constructing a fixed sentence-length window over the documents in a test set, concatenating chunks and then sending them for scoring as a single unit by COMET (Rei et al, 2022). We find that SLIDE improves dramatically over its context-less counterpart on the two WMT22 evaluation campaigns (MQM and DA+SQM).
We introduce and demonstrate how to effectively train multilingual machine translation models with pixel representations. We experiment with two different data settings with a variety of language and script coverage, demonstrating improved performance compared to subword embeddings. We explore various properties of pixel representations such as parameter sharing within and across scripts to better understand where they lead to positive transfer. We observe that these properties not only enable seamless cross-lingual transfer to unseen scripts, but make pixel representations more data-efficient than alternatives such as vocabulary expansion. We hope this work contributes to more extensible multilingual models for all languages and scripts.
Additive interventions are a recently-proposed mechanism for controlling target-side attributes in neural machine translation by modulating the encoder’s representation of a source sequence as opposed to manipulating the raw source sequence as seen in most previous tag-based approaches. In this work we examine the role of additive interventions in a large-scale multi-domain machine translation setting and compare its performance in various inference scenarios. We find that while the performance difference is small between intervention-based systems and tag-based systems when the domain label matches the test domain, intervention-based systems are robust to label error, making them an attractive choice under label uncertainty. Further, we find that the superiority of single-domain fine-tuning comes under question when training data is scaled, contradicting previous findings.
For the most part, NLP applications operate at the sentence level. Since sentences occur most naturally in documents, they must be extracted and segmented via the use of a segmenter, of which there are a handful of options. There has been some work evaluating the performance of segmenters on intrinsic metrics, that look at their ability to recover human-segmented sentence boundaries, but there has been no work looking at the effect of segmenters on downstream tasks. We ask the question, “does segmentation matter?” and attempt to answer it on the task of machine translation. We consider two settings: the application of segmenters to a black-box system whose training segmentation is mostly unknown, as well as the variation in performance when segmenters are applied to the training process, too. We find that the choice of segmenter largely does not matter, so long as its behavior is not one of extreme under- or over-segmentation. For such settings, we provide some qualitative analysis examining their harms, and point the way towards document-level processing.
Traditional machine translation (MT) metrics provide an average measure of translation quality that is insensitive to the long tail of behavioral problems. Examples include translation of numbers, physical units, dropped content and hallucinations. These errors, which occur rarely and unpredictably in Neural Machine Translation (NMT), greatly undermine the reliability of state-of-the-art MT systems. Consequently, it is important to have visibility into these problems during model development.Towards this end, we introduce SALTED, a specifications-based framework for behavioral testing of NMT models. At the core of our approach is the use of high-precision detectors that flag errors (or alternatively, verify output correctness) between a source sentence and a system output. These detectors provide fine-grained measurements of long-tail errors, providing a trustworthy view of problems that were previously invisible. We demonstrate that such detectors could be used not just to identify salient long-tail errors in MT systems, but also for higher-recall filtering of the training data, fixing targeted errors with model fine-tuning in NMT and generating novel data for metamorphic testing to elicit further bugs in models.
We propose a novel scheme to use the Levenshtein Transformer to perform the task of word-level quality estimation. A Levenshtein Transformer is a natural fit for this task: trained to perform decoding in an iterative manner, a Levenshtein Transformer can learn to post-edit without explicit supervision. To further minimize the mismatch between the translation task and the word-level QE task, we propose a two-stage transfer learning procedure on both augmented data and human post-editing data. We also propose heuristics to construct reference labels that are compatible with subword-level finetuning and inference. Results on WMT 2020 QE shared task dataset show that our proposed method has superior data efficiency under the data-constrained setting and competitive performance under the unconstrained setting.
Machine translation models have discrete vocabularies and commonly use subword segmentation techniques to achieve an ‘open vocabulary.’ This approach relies on consistent and correct underlying unicode sequences, and makes models susceptible to degradation from common types of noise and variation. Motivated by the robustness of human language processing, we propose the use of visual text representations, which dispense with a finite set of text embeddings in favor of continuous vocabularies created by processing visually rendered text with sliding windows. We show that models using visual text representations approach or match performance of traditional text models on small and larger datasets. More importantly, models with visual embeddings demonstrate significant robustness to varied types of noise, achieving e.g., 25.9 BLEU on a character permuted German–English task where subword models degrade to 1.9.
The sentence is a fundamental unit of text processing. Yet sentences in the wild are commonly encountered not in isolation, but unsegmented within larger paragraphs and documents. Therefore, the first step in many NLP pipelines is sentence segmentation. Despite its importance, this step is the subject of relatively little research. There are no standard test sets or even methods for evaluation, leaving researchers and engineers without a clear footing for evaluating and selecting models for the task. Existing tools have relatively small language coverage, and efforts to extend them to other languages are often ad hoc. We introduce a modern context-based modeling approach that provides a solution to the problem of segmenting punctuated text in many languages, and show how it can be trained on noisily-annotated data. We also establish a new 23-language multilingual evaluation set. Our approach exceeds high baselines set by existing methods on prior English corpora (WSJ and Brown corpora), and also performs well on average on our new evaluation set. We release our tool, ersatz, as open source.
This paper presents the JHU-Microsoft joint submission for WMT 2021 quality estimation shared task. We only participate in Task 2 (post-editing effort estimation) of the shared task, focusing on the target-side word-level quality estimation. The techniques we experimented with include Levenshtein Transformer training and data augmentation with a combination of forward, backward, round-trip translation, and pseudo post-editing of the MT output. We demonstrate the competitiveness of our system compared to the widely adopted OpenKiwi-XLM baseline. Our system is also the top-ranking system on the MT MCC metric for the English-German language pair.
Many valid translations exist for a given sentence, yet machine translation (MT) is trained with a single reference translation, exacerbating data sparsity in low-resource settings. We introduce Simulated Multiple Reference Training (SMRT), a novel MT training method that approximates the full space of possible translations by sampling a paraphrase of the reference sentence from a paraphraser and training the MT model to predict the paraphraser’s distribution over possible tokens. We demonstrate the effectiveness of SMRT in low-resource settings when translating to English, with improvements of 1.2 to 7.0 BLEU. We also find SMRT is complementary to back-translation.
We frame the task of machine translation evaluation as one of scoring machine translation output with a sequence-to-sequence paraphraser, conditioned on a human reference. We propose training the paraphraser as a multilingual NMT system, treating paraphrasing as a zero-shot translation task (e.g., Czech to Czech). This results in the paraphraser’s output mode being centered around a copy of the input sequence, which represents the best case scenario where the MT system output matches a human reference. Our method is simple and intuitive, and does not require human judgements for training. Our single model (trained in 39 languages) outperforms or statistically ties with all prior metrics on the WMT 2019 segment-level shared metrics task in all languages (excluding Gujarati where the model had no training data). We also explore using our model for the task of quality estimation as a metric—conditioning on the source instead of the reference—and find that it significantly outperforms every submission to the WMT 2019 shared task on quality estimation in every language pair.
Data privacy is an important issue for “machine learning as a service” providers. We focus on the problem of membership inference attacks: Given a data sample and black-box access to a model’s API, determine whether the sample existed in the model’s training data. Our contribution is an investigation of this problem in the context of sequence-to-sequence models, which are important in applications such as machine translation and video captioning. We define the membership inference problem for sequence generation, provide an open dataset based on state-of-the-art machine translation models, and report initial results on whether these models leak private information against several kinds of membership inference attacks.
The standard machine translation evaluation framework measures the single-best output of machine translation systems. There are, however, many situations where n-best lists are needed, yet there is no established way of evaluating them. This paper establishes a framework for addressing n-best evaluation by outlining three different questions one could consider when determining how one would define a ‘good’ n-best list and proposing evaluation measures for each question. The first and principal contribution is an evaluation measure that characterizes the translation quality of an entire n-best list by asking whether many of the valid translations are placed near the top of the list. The second is a measure that uses gold translations with preference annotations to ask to what degree systems can produce ranked lists in preference order. The third is a measure that rewards partial matches, evaluating the closeness of the many items in an n-best list to a set of many valid references. These three perspectives make clear that having access to many references can be useful when n-best evaluation is the goal.
This paper presents the results of the news translation task and the similar language translation task, both organised alongside the Conference on Machine Translation (WMT) 2020. In the news task, participants were asked to build machine translation systems for any of 11 language pairs, to be evaluated on test sets consisting mainly of news stories. The task was also opened up to additional test suites to probe specific aspects of translation. In the similar language translation task, participants built machine translation systems for translating between closely related pairs of languages.
Recent work has shown that a multilingual neural machine translation (NMT) model can be used to judge how well a sentence paraphrases another sentence in the same language (Thompson and Post, 2020); however, attempting to generate paraphrases from such a model using standard beam search produces trivial copies or near copies. We introduce a simple paraphrase generation algorithm which discourages the production of n-grams that are present in the input. Our approach enables paraphrase generation in many languages from a single multilingual NMT model. Furthermore, the amount of lexical diversity between the input and output can be controlled at generation time. We conduct a human evaluation to compare our method to a paraphraser trained on the large English synthetic paraphrase database ParaBank 2 (Hu et al., 2019c) and find that our method produces paraphrases that better preserve meaning and are more gramatical, for the same level of lexical diversity. Additional smaller human assessments demonstrate our approach also works in two non-English languages.
We describe parBLEU, parCHRF++, and parESIM, which augment baseline metrics with automatically generated paraphrases produced by PRISM (Thompson and Post, 2020a), a multilingual neural machine translation system. We build on recent work studying how to improve BLEU by using diverse automatically paraphrased references (Bawden et al., 2020), extending experiments to the multilingual setting for the WMT2020 metrics shared task and for three base metrics. We compare their capacity to exploit up to 100 additional synthetic references. We find that gains are possible when using additional, automatically paraphrased references, although they are not systematic. However, segment-level correlations, particularly into English, are improved for all three metrics and even with higher numbers of paraphrased references.
We investigate a long-perceived shortcoming in the typical use of BLEU: its reliance on a single reference. Using modern neural paraphrasing techniques, we study whether automatically generating additional *diverse* references can provide better coverage of the space of valid translations and thereby improve its correlation with human judgments. Our experiments on the into-English language directions of the WMT19 metrics task (at both the system and sentence level) show that using paraphrased references does generally improve BLEU, and when it does, the more diverse the better. However, we also show that better results could be achieved if those paraphrases were to specifically target the parts of the space most relevant to the MT outputs being evaluated. Moreover, the gains remain slight even when human paraphrases are used, suggesting inherent limitations to BLEU’s capacity to correctly exploit multiple references. Surprisingly, we also find that adequacy appears to be less important, as shown by the high results of a strong sampling approach, which even beats human paraphrases when used with sentence-level BLEU.
This paper presents the Johns Hopkins University submission to the 2020 Duolingo Shared Task on Simultaneous Translation and Paraphrase for Language Education (STAPLE). We participated in all five language tasks, placing first in each. Our approach involved a language-agnostic pipeline of three components: (1) building strong machine translation systems on general-domain data, (2) fine-tuning on Duolingo-provided data, and (3) generating n-best lists which are then filtered with various score-based techniques. In addi- tion to the language-agnostic pipeline, we attempted a number of linguistically-motivated approaches, with, unfortunately, little success. We also find that improving BLEU performance of the beam-search generated translation does not necessarily improve on the task metric—weighted macro F1 of an n-best list.
Research in machine translation (MT) is developing at a rapid pace. However, most work in the community has focused on languages where large amounts of digital resources are available. In this study, we benchmark state of the art statistical and neural machine translation systems on two African languages which do not have large amounts of resources: Somali and Swahili. These languages are of social importance and serve as test-beds for developing technologies that perform reasonably well despite the low-resource constraint. Our findings suggest that statistical machine translation (SMT) and neural machine translation (NMT) can perform similarly in low-resource scenarios, but neural systems require more careful tuning to match performance. We also investigate how to exploit additional data, such as bilingual text harvested from the web, or user dictionaries; we find that NMT can significantly improve in performance with the use of these additional data. Finally, we survey the landscape of machine translation resources for the languages of Africa and provide some suggestions for promising future research directions.
We present findings from the creation of a massively parallel corpus in over 1600 languages, the Johns Hopkins University Bible Corpus (JHUBC). The corpus consists of over 4000 unique translations of the Christian Bible and counting. Our data is derived from scraping several online resources and merging them with existing corpora, combining them under a common scheme that is verse-parallel across all translations. We detail our effort to scrape, clean, align, and utilize this ripe multilingual dataset. The corpus captures the great typological variety of the world’s languages. We catalog this by showing highly similar proportions of representation of Ethnologue’s typological features in our corpus. We also give an example application: projecting pronoun features like clusivity across alignments to richly annotate languages which do not mark the distinction.
This paper presents the results of the premier shared task organized alongside the Conference on Machine Translation (WMT) 2019. Participants were asked to build machine translation systems for any of 18 language pairs, to be evaluated on a test set of news stories. The main metric for this task is human judgment of translation quality. The task was also opened up to additional test suites to probe specific aspects of translation.
We describe the JHU submissions to the French–English, Japanese–English, and English–Japanese Robustness Task at WMT 2019. Our goal was to evaluate the performance of baseline systems on both the official noisy test set as well as news data, in order to ensure that performance gains in the latter did not come at the expense of general-domain performance. To this end, we built straightforward 6-layer Transformer models and experimented with a handful of variables including subword processing (FR→EN) and a handful of hyperparameters settings (JA↔EN). As expected, our systems performed reasonably.
Producing diverse paraphrases of a sentence is a challenging task. Natural paraphrase corpora are scarce and limited, while existing large-scale resources are automatically generated via back-translation and rely on beam search, which tends to lack diversity. We describe ParaBank 2, a new resource that contains multiple diverse sentential paraphrases, produced from a bilingual corpus using negative constraints, inference sampling, and clustering. We show that ParaBank 2 significantly surpasses prior work in both lexical and syntactic diversity while being meaning-preserving, as measured by human judgments and standardized metrics. Further, we illustrate how such paraphrastic resources may be used to refine contextualized encoders, leading to improvements in downstream tasks.
Lexically-constrained sequence decoding allows for explicit positive or negative phrase-based constraints to be placed on target output strings in generation tasks such as machine translation or monolingual text rewriting. We describe vectorized dynamic beam allocation, which extends work in lexically-constrained decoding to work with batching, leading to a five-fold improvement in throughput when working with positive constraints. Faster decoding enables faster exploration of constraint strategies: we illustrate this via data augmentation experiments with a monolingual rewriter applied to the tasks of natural language inference, question answering and machine translation, showing improvements in all three.
We introduce a novel discriminative word alignment model, which we integrate into a Transformer-based machine translation model. In experiments based on a small number of labeled examples (∼1.7K–5K sentences) we evaluate its performance intrinsically on both English-Chinese and English-Arabic alignment, where we achieve major improvements over unsupervised baselines (11–27 F1). We evaluate the model extrinsically on data projection for Chinese NER, showing that our alignments lead to higher performance when used to project NER tags from English to Chinese. Finally, we perform an ablation analysis and an annotation experiment that jointly support the utility and feasibility of future manual alignment elicitation.
The field of machine translation faces an under-recognized problem because of inconsistency in the reporting of scores from its dominant metric. Although people refer to “the” BLEU score, BLEU is in fact a parameterized metric whose values can vary wildly with changes to these parameters. These parameters are often not reported or are hard to find, and consequently, BLEU scores between papers cannot be directly compared. I quantify this variation, finding differences as high as 1.8 between commonly used configurations. The main culprit is different tokenization and normalization schemes applied to the reference. Pointing to the success of the parsing community, I suggest machine translation researchers settle upon the BLEU scheme used by the annual Conference on Machine Translation (WMT), which does not allow for user-supplied reference processing, and provide a new tool, SACREBLEU, to facilitate this.
The end-to-end nature of neural machine translation (NMT) removes many ways of manually guiding the translation process that were available in older paradigms. Recent work, however, has introduced a new capability: lexically constrained or guided decoding, a modification to beam search that forces the inclusion of pre-specified words and phrases in the output. However, while theoretically sound, existing approaches have computational complexities that are either linear (Hokamp and Liu, 2017) or exponential (Anderson et al., 2017) in the number of constraints. We present a algorithm for lexically constrained decoding with a complexity of O(1) in the number of constraints. We demonstrate the algorithm’s remarkable ability to properly place these constraints, and use it to explore the shaky relationship between model and BLEU scores. Our implementation is available as part of Sockeye.
Domain adaptation is a major challenge for neural machine translation (NMT). Given unknown words or new domains, NMT systems tend to generate fluent translations at the expense of adequacy. We present a stack-based lattice search algorithm for NMT and show that constraining its search space with lattices generated by phrase-based machine translation (PBMT) improves robustness. We report consistent BLEU score gains across four diverse domain adaptation tasks involving medical, IT, Koran, or subtitles texts.
We propose a neural encoder-decoder model with reinforcement learning (NRL) for grammatical error correction (GEC). Unlike conventional maximum likelihood estimation (MLE), the model directly optimizes towards an objective that considers a sentence-level, task-specific evaluation metric, avoiding the exposure bias issue in MLE. We demonstrate that NRL outperforms MLE both in human and automated evaluation metrics, achieving the state-of-the-art on a fluency-oriented GEC corpus.
We propose a new dependency parsing scheme which jointly parses a sentence and repairs grammatical errors by extending the non-directional transition-based formalism of Goldberg and Elhadad (2010) with three additional actions: SUBSTITUTE, DELETE, INSERT. Because these actions may cause an infinite loop in derivation, we also introduce simple constraints that ensure the parser termination. We evaluate our model with respect to dependency accuracy and grammaticality improvements for ungrammatical sentences, demonstrating the robustness and applicability of our scheme.
A traditional claim in linguistics is that all human languages are equally expressive—able to convey the same wide range of meanings. Morphologically rich languages, such as Czech, rely on overt inflectional and derivational morphology to convey many semantic distinctions. Languages with comparatively limited morphology, such as English, should be able to accomplish the same using a combination of syntactic and contextual cues. We capitalize on this idea by training a tagger for English that uses syntactic features obtained by automatic parsing to recover complex morphological tags projected from Czech. The high accuracy of the resulting model provides quantitative confirmation of the underlying linguistic hypothesis of equal expressivity, and bodes well for future improvements in downstream HLT tasks including machine translation.
Statistical Machine Translation (SMT) of highly inflected, low-resource languages suffers from the problem of low bitext availability, which is exacerbated by large inflectional paradigms. When translating into English, rich source inflections have a high chance of being poorly estimated or out-of-vocabulary (OOV). We present a source language-agnostic system for automatically constructing phrase pairs from foreign-language inflections and their morphological analyses using manually constructed datasets, including Wiktionary. We then demonstrate the utility of these phrase tables in improving translation into English from Finnish, Czech, and Turkish in simulated low-resource settings, finding substantial gains in translation quality. We report up to +2.58 BLEU in a simulated low-resource setting and +1.65 BLEU in a moderateresource setting. We release our morphologically-motivated translation models, with tens of thousands of inflections in each of 8 languages.
The field of grammatical error correction (GEC) has grown substantially in recent years, with research directed at both evaluation metrics and improved system performance against those metrics. One unvisited assumption, however, is the reliance of GEC evaluation on error-coded corpora, which contain specific labeled corrections. We examine current practices and show that GEC’s reliance on such corpora unnaturally constrains annotation and automatic evaluation, resulting in (a) sentences that do not sound acceptable to native speakers and (b) system rankings that do not correlate with human judgments. In light of this, we propose an alternate approach that jettisons costly error coding in favor of unannotated, whole-sentence rewrites. We compare the performance of existing metrics over different gold-standard annotations, and show that automatic evaluation with our new annotation scheme has very strong correlation with expert rankings (ρ = 0.82). As a result, we advocate for a fundamental and necessary shift in the goal of GEC, from correcting small, labeled error types, to producing text that has native fluency.
We present a large scale study of the languages spoken by bilingual workers on Mechanical Turk (MTurk). We establish a methodology for determining the language skills of anonymous crowd workers that is more robust than simple surveying. We validate workers’ self-reported language skill claims by measuring their ability to correctly translate words, and by geolocating workers to see if they reside in countries where the languages are likely to be spoken. Rather than posting a one-off survey, we posted paid tasks consisting of 1,000 assignments to translate a total of 10,000 words in each of 100 languages. Our study ran for several months, and was highly visible on the MTurk crowdsourcing platform, increasing the chances that bilingual workers would complete it. Our study was useful both to create bilingual dictionaries and to act as census of the bilingual speakers on MTurk. We use this data to recommend languages with the largest speaker populations as good candidates for other researchers who want to develop crowdsourced, multilingual technologies. To further demonstrate the value of creating data via crowdsourcing, we hire workers to create bilingual parallel corpora in six Indian languages, and use them to train statistical machine translation systems.
We describe a corpus for target-contextualized machine translation (MT), where the task is to improve the translation of source documents using language models built over presumably related documents in the target language. The idea presumes a situation where most of the information about a topic is in a foreign language, yet some related target-language information is known to exist. Our corpus comprises a set of curated English Wikipedia articles describing news events, along with (i) their Spanish counterparts and (ii) some of the Spanish source articles cited within them. In experiments, we translated these Spanish documents, treating the English articles as target-side context, and evaluate the effect on translation quality when including target-side language models built over this English context and interpolated with other, separately-derived language model data. We find that even under this simplistic baseline approach, we achieve significant improvements as measured by BLEU score.
Machine translation (MT) draws from several different disciplines, making it a complex subject to teach. There are excellent pedagogical texts, but problems in MT and current algorithms for solving them are best learned by doing. As a centerpiece of our MT course, we devised a series of open-ended challenges for students in which the goal was to improve performance on carefully constrained instances of four key MT tasks: alignment, decoding, evaluation, and reranking. Students brought a diverse set of techniques to the problems, including some novel solutions which performed remarkably well. A surprising and exciting outcome was that student solutions or their combinations fared competitively on some tasks, demonstrating that even newcomers to the field can help improve the state-of-the-art on hard NLP problems while simultaneously learning a great deal. The problems, baseline code, and results are freely available.
Research into the translation of the output of automatic speech recognition (ASR) systems is hindered by the dearth of datasets developed for that explicit purpose. For SpanishEnglish translation, in particular, most parallel data available exists only in vastly different domains and registers. In order to support research on cross-lingual speech applications, we introduce the Fisher and Callhome Spanish-English Speech Translation Corpus, supplementing existing LDC audio and transcripts with (a) ASR 1-best, lattice, and oracle output produced by the Kaldi recognition system and (b) English translations obtained on Amazon’s Mechanical Turk. The result is a four-way parallel dataset of Spanish audio, transcriptions, ASR lattices, and English translations of approximately 38 hours of speech, with defined training, development, and held-out test sets. We conduct baseline machine translation experiments using models trained on the provided training data, and validate the dataset by corroborating a number of known results in the field, including the utility of in-domain (information, conversational) training data, increased performance translating lattices (instead of recognizer 1-best output), and the relationship between word error rate and BLEU score.
Most work in syntax-based machine translation has been in translation modeling, but there are many reasons why we may instead want to focus on the language model. We experiment with parsers as language models for machine translation in a simple translation model. This approach demands much more of the language models, allowing us to isolate their strengths and weaknesses. We find that unmodified parsers do not improve BLEU scores over ngram language models, and provide an analysis of their strengths and weaknesses.